
FOR INFORMATION PURPOSE

FOR INFORMATION PURPOSE

DRAFT

APPLICATION SECURITY ASSESSMENT
METHODOLOGY

Version 1.0
November 22, 2002

Center for Information Assurance Applications
Applications and Computing Security Division

5275 Leesburg Pike
Falls Church, VA 22041

(This document is for review. Comments, if any, can be sent to

JainD@ncr.disa.mil or KoehlerS@ncr.disa.mil)

DRAFT FOR INFORMATION PURPOSE

ii
FOR INFORMATION PURPOSE

TABLE OF CONTENTS
Page

Number

1. INTRODUCTION ..1

1.1 OBJECTIVE..1

1.2 BACKGROUND...1

1.3 SCOPE..2
1.3.1 Intended Audience..2
1.3.2 Assessment Environment ...3
1.3.3 Assessment Methodology Updates..3

1.4 DOCUMENT STRUCTURE...3

2. TOOLKIT OVERVIEW...5

2.1 TOOL CATEGORIES ...5
2.1.1 Web Application Assessment Tools...6
2.1.2 Database Assessment Tools ..6
2.1.3 General-Purpose Assessment Tools...6
2.1.4 Developer Assessment Tools...6

2.2 TOOL OVERVIEW...7
2.2.1 SPIDynamics WebInspect (Web Application Assessment Tool)...............................8
2.2.2 ISS Database Scanner (Database Assessment Tool) ..8
2.2.3 eEye Digital Security Retina (General-Purpose Assessment Tool)9
2.2.4 Flawfinder (Developer Assessment Tool)...10
2.2.5 RATS (Developer Assessment Tool) ...11
2.2.6 Splint (Developer Assessment Tool) ..11

2.3 RUNNING TOOLS FROM TOOLKIT ..12

3. ASSESSMENT PROCESS OVERVIEW..13

4. PRE-ASSESSMENT PHASE...15

4.1 APPLICATION CATEGORIZATION..16

4.2 VULNERABILITY AND REQUIREMENTS IDENTIFICATION..................................17

4.3 TOOLKIT CAPABILITY TO REQUIREMENTS MAPPING..17

4.4 TOOL SELECTION..18

4.5 SUPPLEMENTAL PROCEDURES AND ASSESSMENT PROCESS...........................18

4.6 TEST ENVIRONMENT PREPARATION..21

DRAFT FOR INFORMATION PURPOSE

iii
FOR INFORMATION PURPOSE

5. ASSESSMENT PHASE..23

5.1 SPIDYNAMICS WEBINSPECT ..23
5.1.1 Tool Configuration..23
5.1.2 Tool Use...28
5.1.3 Interpreting Tool Output..34

5.2 ISS DATABASE SCANNER..36
5.2.1 Tool Configuration..36
5.2.2 Tool Use...38
5.2.3 Interpreting Tool Output..41

5.3 EEYE RETINA..42
5.3.1 Tool Configuration..42
5.3.2 Tool Use...48
5.3.3 Interpreting Tool Output..50

5.4 SPLINT ...51
5.4.1 Tool Configuration..52
5.4.2 Tool Use...52
5.4.3 Interpreting Tool Output..53

5.5 FLAWFINDER..55
5.5.1 Tool Configuration..55
5.5.2 Tool Use...56
5.5.3 Interpreting Tool Output..57

5.6 RATS ...59
5.6.1 Tool Configuration..59
5.6.2 Tool Use...60
5.6.3 Interpreting Tool Output..60

6. POST-ASSESSMENT PHASE..65

6.1 TAKE CORRECTIVE ACTIONS AND APPLY SUGGESTED FIXES65

6.2 VALIDATE FUNCTIONALITY AND RERUN TOOL..66

6.3 CAPTURE LESSONS LEARNED..67

6.4 ESTABLISH A TESTING AND EVALUATION REGIME ..67

7. CONCLUSION ...68

APPENDIX A: ACRONYMS..A-1

APPENDIX B: REFERENCES ...B-1

APPENDIX C: REQUIREMENTS - TOOLKIT CAPABILITY MAP...................................C-1

DRAFT FOR INFORMATION PURPOSE

1
FOR INFORMATION PURPOSE

1. INTRODUCTION

1.1 OBJECTIVE

This document establishes an assessment process for application developers and security engineers to
use as they design and assess security mechanisms in their applications. The methodology will assist
application developers in identifying vulnerabilities in their applications and in validating application
security requirements as defined in the Recommended Standard Application Security Requirements
document, drafted as a precursor to this methodology. The assessment methodology will serve as a first
step in ensuring that security is designed into existing applications and will aid application developers in
identifying security flaws early in the life cycle of an application. The methodology can be used to assess
and validate requirements in applications of various types, including stand-alone Web applications and
Web applications that interoperate with “backend” databases and other legacy servers. The
methodology presents ways to identify general vulnerabilities and common programming/coding errors
for a variety of applications.

It is anticipated that the methodology presented herein will be used by not only developers to design
security into applications during the development phase, but also certification and accreditation
personnel in the future to validate an application’s security integrity. Furthermore, the methodology can
be used to identify vulnerabilities and improve security currently designed into existing applications.

This methodology provides an overview of tools that can be used during the assessment process and
explains how the tools have been categorized to best assess requirements against a specific application.
The methodology addresses proper tool selection, configuration, and scanning techniques. Guidelines
for interpreting assessment results are presented and ways to identify corrective actions are suggested.

1.2 BACKGROUND

The Defense Information Systems Agency (DISA) Application and Computing Security Division’s
(API2) mission is to provide for the identification, development, system engineering, prototyping,
provisioning, and implementation of various technologies supporting the defense-in-depth (DID)
concept for multilayered protection of the global applications and computing infrastructure of the global
information grid (GIG). API2 has defined a set of application security requirements and common
vulnerabilities applicable to a majority of applications. These security requirements were documented in
the Application Security Developer’s Guide. API2 identified a set of tools that can be used to
identify application vulnerabilities and are grouped in the Application Security Assessment Toolkit.

This document presents a methodology to test for application security requirements and vulnerabilities
presented in the Recommended Standard Application Security Requirements document. The
assessment methodology uses assessment tools identified in the Application Security Assessment
Tools Market Survey and suggests corrective actions where applicable based on guidance presented in
the Application Security Developer’s Guide. This assessment methodology will help application

DRAFT FOR INFORMATION PURPOSE

2
FOR INFORMATION PURPOSE

developers and test engineers establish an assessment process that can be used throughout the
application’s development life cycle.

1.3 SCOPE

The methodology presented herein defines a process that developers can use to test and validate
applications of all types regardless of platform or operating system. The methodology can be used to
assess server applications, client applications, and standalone applications where the application types
range from Web, database and collaboration applications, and ultimately to legacy applications. At this
point, the methodology was developed with a multitool approach in mind because no single tool exists
to test all types of applications as well as validate all security requirements. Therefore, multiple tools
must be used (thus, the development of the Application Security Assessment Toolkit) along with
supplemental procedures when assessing the security of an application. The methodology predominately
focuses on Web applications because of the maturity of tools available. This methodology may be
applied to legacy applications once assessment tools are developed or modified to assess the security of
legacy applications.

Note, however, that completion of this methodology does not guarantee perfect security in an
application. The tools within the Toolkit, although quite comprehensive, will not validate all security
requirements. Moreover, use of the Toolkit will not guarantee that all security vulnerabilities will be
discovered within an application. In fact, all items within the Toolkit are continually being improved and
updated by their respective manufacturers and vendors as new vulnerabilities are discovered and
existing detection techniques are updated. As such, it is suggested that applications be assessed
repeatedly for vulnerabilities throughout their life cycle.

1.3.1 Intended Audience

Application developers should use this methodology to learn how to identify and improve on
unintentional vulnerabilities introduced during application development, thereby making future
applications more secure.

Application developers and security engineers will use this methodology as a starting point for testing
and identifying potential vulnerabilities in their applications and assessing the validity of security
requirements and features designed into applications.

The intended audience for this methodology document shall be application developers, security
engineers, certifiers and accreditors, and any other personnel involved in the application development
and security testing process. It is assumed that the audience following the methodology presented in this
document is already well versed in software development processes and testing practices associated
with vulnerability assessments. The individuals implementing this methodology should have an
understanding of, and general experience with, the target application(s). It is also assumed that they are
familiar with the assessment tools contained in the Application Security Assessment Toolkit. For this
document, this audience shall be referred to, in an all-inclusive sense, as “developers.”

DRAFT FOR INFORMATION PURPOSE

3
FOR INFORMATION PURPOSE

1.3.2 Assessment Environment

Application assessments using this methodology should be carried out in a test environment. This
methodology recommends using assessment tools that are capable of stressing applications to their
maximum design limits. Assessment tests performed can fill logs, databases, directories, and other data
collectors with great quantities of test data. The testing performed can also introduce many errors into
an application or Web site. The ability to restart applications or revert back to pretest baseline
conditions is essential. It is strongly suggested that a comprehensive assessment be conducted only
against development sites and applications, not against production environments.

This methodology can be used to assess production applications; however, it may not be possible to
perform all tests. Careful configuration of the vulnerability assessment tools is required to ensure that the
applications remain operational in a production environment.

1.3.3 Assessment Methodology Updates

This “living document” will be updated periodically as new assessment tools are developed and made
available. The assessment methodology presented in the following sections is geared toward assessing
applications using the scanning tools contained in the Application Security Assessment Toolkit, dated
October 2002.

Although the assessment methodology is not all-inclusive, it will be as comprehensive as possible using
the technologies now available. The general application assessment approach presented in the sections
below should remain constant regardless of additions and changes to the Toolkit. If anything, the
assessment methodology will be enhanced to address new security requirements, new capabilities, and
new methods to check for additional security requirements as functionality is added to future versions of
the Toolkit.

1.4 DOCUMENT STRUCTURE

This document consists of seven sections and three appendices. An overview of the sections is provided
below.

• Section 1, Introduction, describes the objectives, scope, and structure of this document.

• Section 2, Toolkit Overview, describes the overall Toolkit concept and provides an overview of
each tool.

• Section 3, Assessment Process Overview, provides a high-level discussion of the overall
assessment methodology.

• Section 4, Pre-Assessment Phase, describes the necessary steps in the pre-assessment process.

• Section 5, Assessment Phase, discusses the procedures required to conduct an assessment using
each tool from the current toolkit.

• Section 6, Post-Assessment Phase, describes the necessary steps in the post-assessment process.

DRAFT FOR INFORMATION PURPOSE

4
FOR INFORMATION PURPOSE

• Section 7, Conclusion, summarizes and concludes this entire document.

• Appendix A, Acronyms, lists the acronyms used throughout this document.

• Appendix B, References, lists the references used throughout this document.

• Appendix C, Requirements-Toolkit Capability Map, facilitates mapping the current Toolkit’s
capabilities to the security requirements established in the Recommended Standard Application
Security Requirements document.

DRAFT FOR INFORMATION PURPOSE

5
FOR INFORMATION PURPOSE

2. TOOLKIT OVERVIEW

2.1 TOOL CATEGORIES

The application developer is challenged to work in a space that encompasses many different platforms,
hosts, and applications. This workspace, as illustrated by the gray shaded area in Figure 2-1, could
span from Web servers to application servers to databases, with middleware serving as the glue to
connect them via some sort of network. Each area is potentially susceptible to vulnerabilities.
Unfortunately, because each is distinct, no single tool is capable of comprehensively assessing all
platforms. Therefore, the concept of a vulnerability assessment (VA) toolkit has evolved to provide a
comprehensive means of assessing vulnerabilities across the developer’s continuum.

The VA toolkit, in its current incarnation, is composed of four principal tool categories:

• Web Application Assessment Tools

• Database Assessment Tools

• General-Purpose Assessment Tools

• Developer Assessment Tools.

A brief description of each tool category follows.

Figure 2-1. Application Security Assessment Toolkit Concept

Application
Assessment Tool

Middleware

General Purpose
Assessment Tool

Developer
Assessment Tool

Database
Assessment Tool

Application
Server

Database
Web

Server

DRAFT FOR INFORMATION PURPOSE

6
FOR INFORMATION PURPOSE

2.1.1 Web Application Assessment Tools

Web application assessment tools are designed to automatically scan Web applications, sites, and
servers, looking for potential vulnerabilities. These tools differ from general-purpose VA tools in that
they do not perform a broad range of checks on a myriad of software and hardware (i.e., port scanning
or host vulnerability scanning). Instead, they perform other checks, such as potential field manipulation
and cookie poisoning, which allows a more focused assessment of Web applications by exposing
vulnerabilities that standard VA tools cannot detect.

2.1.2 Database Assessment Tools

Database assessment tools are vulnerability scanners designed to specifically evaluate and assess
database vulnerabilities. These tools perform penetration testing and auditing, scanning for known
configuration vulnerabilities, incorrect settings, weak security profiles, and missing patches or out-of-
date software.

2.1.3 General-Purpose Assessment Tools

General-purpose assessment tools are the traditional security scanning tools that concentrate on
scanning networks and systems for potential security weaknesses and recommend fixes. Because these
tools are designed to scan a broad range of applications and systems, their ability to focus in-depth on
the vulnerabilities of a specific item, such as a database, is limited.

2.1.4 Developer Assessment Tools

Developer assessment tools are designed to directly aid the application developer or software engineer.
These tools are designed to locate potential vulnerabilities in either source-code or compiled programs.
They do not definitively find bugs; rather they provide a reasonable starting point for performing manual
security audits. These tools are mainly composed of source-code scanners, which generally are
relatively new (and sometimes still under development) open-source tools designed to scan source
code, finding potentially dangerous function calls. These tools will highlight potential vulnerabilities and
allow the developer to either repair them or accept their risk. These tools provide better information and
better prioritization than simply searching the source code for risky functions using the “grep” search
tool.

Note that these tools are intended for use by the developer or someone with extensive knowledge and
understanding of the source code of applications. Although these tools are not inherently complex, they
require sophistication on the part of the user and intimate knowledge of the analyzed code to interpret
the results.

DRAFT FOR INFORMATION PURPOSE

7
FOR INFORMATION PURPOSE

2.2 TOOL OVERVIEW

The Application Security Assessment Toolkit currently includes the four types of tools discussed in
Section 2.1 and illustrated in Figure 2-2 above. Specifically, these tools by type are as follows:

• SPIDynamics WebInspect (Web application assessment tool)

• Internet Security Systems (ISS) Database Scanner (database assessment tool)

• eEye Retina (general purpose assessment tool)

• Developer assessment tools

Ø Flawfinder

Ø Rough Auditing Tool for Security (RATS)

Ø Splint.

Note that the three developer assessment tools (Flawfinder, RATS, and Splint) possess similar
capabilities across a broad range of programming languages while differing slightly in the vulnerabilities
that each detects. It is therefore envisioned that the developer will use as many of the developer
assessment tools as feasible to maximize the type of vulnerabilities detected.

Figure 2-2. Toolkit Components

Developer ATs
(FlawFinder, RATS, Splint)

General Purpose AT
(eEye Retina)

Web Application AT
(SPIDynamics WebInspect)

Database AT
(ISS Database Scanner)

DRAFT FOR INFORMATION PURPOSE

8
FOR INFORMATION PURPOSE

2.2.1 SPIDynamics WebInspect (Web Application Assessment Tool)

WebInspect is designed to dynamically scan standard and proprietary Web applications to identify
known application vulnerabilities. It allows the user to conduct security assessments on any Web-
enabled application, including specific assessment capabilities for IBM WebSphere, Lotus Domino,
Oracle Application Servers, and MacroMedia ColdFusion. Configuring the system to analyze Internet
applications is easily accomplished quickly, although this can vary depending on the number of systems
to be analyzed. WebInspect uses “Adaptive-Agent” technology, a set of heuristics that enables it to
apply intelligent application-level security checks. This technology is a multiphased approach to Web
application assessments. As a user initiates an assessment, WebInspect assigns assessment agents to
dynamically catalog all areas of a Web application. As these agents complete the assessment, findings
are reported back to a main security engine that analyzes the results. WebInspect then launches “threat
agents” to evaluate the gathered information and apply attack algorithms to determine what
vulnerabilities exist and the severity of those vulnerabilities.

WebInspect provides a full programming language and programming tools to write custom rules. The
tool provides advanced executive-level reporting functionality with additional report and graphing
features, including trend analysis, for comparing assessments and tracking progress. Finally, WebInspect
electronically updates its built-in intelligence as it references and synchronizes (in a live-update manner)
with a continuously updated database of hacking methodologies over the Internet.

2.2.2 ISS Database Scanner (Database Assessment Tool)

The ISS Database Scanner assessment tool identifies security vulnerabilities in leading database
applications, such as Microsoft SQL Server, Oracle, and/or Sybase database servers. Database
Scanner offers security policy generation and reporting functionality, which measures policy compliance
and automates the process of securing critical online data. Database Scanner can perform two types of
database scans: an audit scan and a penetration test.

The audit scan is an inside-out approach that enumerates users, groups, privileges, logins, and a wide
number of other objects in the database, identifying misconfigured privileges and opportunities for
misuse by authorized users. It allows users to identify exactly what objects are in their database, who
has access to them, and what they have been doing and could do. Penetration testing, on the other
hand, is an outside-in approach that attempts to gain access to a database the way a hacker would by
using known default passwords and password guessing.

Database Scanner includes a set of predefined, customizable “best practice” security policies. These
policies allow for a broad range of tests from analyzing the risk of compromise from simple attacks by

DRAFT FOR INFORMATION PURPOSE

9
FOR INFORMATION PURPOSE

unsophisticated external attackers to testing the integrity of application data against accidental or
malicious changes.1

Database Scanner assists in identifying the following types of vulnerabilities:

• Authentication checks encompass all of the settings needed to verify each user’s claimed
identity within the database management system. Includes password strength analysis, password
aging, login attacks, stale logins, default login and password checks, and security of
administrative accounts.

• Authorization checks focus on how an authenticated user is permitted to use specific
resources within the system. Includes logon-hours violations, account and role permissions,
stored procedure access, unauthorized object owners, resource access, and permissions.

• System integrity checks focus on the coordination and control of system resources of the
database system. Includes Trojan horses, operating system integrity, audit configuration, and
analysis.

Database Scanner also provides executive-level reporting functionality with additional report and
graphing features. Finally, Database Scanner can be electronically updated via the using its
XpressUpdate feature, which provides updates to its database with the latest vulnerabilities and refined
checks.

2.2.3 eEye Digital Security Retina (General-Purpose Assessment Tool)

Retina is able to scan all types of operating systems for vulnerabilities, including UNIX-based operating
systems (e.g., Solaris, Linux, BSD, etc.) as well as networked devices (such as routers and firewalls).
Retina includes vulnerability auditing modules for the following services: Network Basic Input/Output
System (NetBIOS), HyperText Transfer Protocol (HTTP), Common Gateway Interface (CGI), File
Transfer Protocol (FTP), Domain Name Service (DNS), Post Office Protocol 3 (POP3), Simple Mail
Transfer Protocol (SMTP), Lightweight Directory Access Protocol (LDAP), Transmission Control
Protocol/Internet Protocol (TCP/IP), and User Datagram Protocol (UDP). Additionally, Retina has
modules for checking registry settings, Denial of Service (DoS) vulnerabilities, Users and Accounts,
password vulnerabilities, and publishing extensions.

Retina is designed to scan for vulnerabilities quickly, concisely, and accurately and uses an artificial
intelligence (AI) module, which analyzes all data gathered to determine exactly what protocol and

1 It is recommended to use Database Scanner in conjunction with other tools from the Toolkit, such as a Web
application assessment tool and a general-purpose assessment tool. The Web application tool could provide a
detailed assessment of Web-enabled database front-end (if used), whereas the general-purpose tool would provide a
detailed assessment and recommendations for locking down the base operating system and network services on
which database servers and related critical systems reside.

DRAFT FOR INFORMATION PURPOSE

10
FOR INFORMATION PURPOSE

service is running before proceeding and running the appropriate vulnerability checks. To find possible
unknown vulnerabilities, Retina uses Common Hacking Attack Methods (CHAM), along with the AI
technology, to identify potentially unknown vulnerabilities. (Note that Retina’s CHAM feature has
allowed eEye to discover some of the more recent large vulnerabilities in Microsoft IIS.)

Retina’s use of the AI module to perform smart scanning allows for a scanning tool that is extremely
fast. These features are easily and intuitively accessed through a well-designed graphical user interface
(GUI) interface. Furthermore, all aspects of the scanning and reporting are easily controlled through this
GUI.

Retina generates detailed information about any vulnerabilities discovered, including detailed fix/repair
information. Note that in addition to including detailed fix information for all of the above known systems
and service vulnerabilities, Retina can also automatically fix many of the above listed vulnerabilities, such
as with registry settings and file permissions.2

Finally, as new vulnerabilities are discovered, an autoupdate feature provides updates for its modules on
a regular basis. For individuals who discover their own vulnerabilities or desire other modules to be
checked, Retina also has an open architecture that allows the user to create their own modules with any
programming language, such as Perl, C, C++, Visual Basic, and Delphi.

2.2.4 Flawfinder (Developer Assessment Tool)

Developed by David Wheeler, Flawfinder is a Python language program that can be used to assist
auditing C and C++ code. Flawfinder works by using a built-in database of C/C++ functions with well-
known problems, such as the following:

• Buffer Overflow Risks (e.g., strcpy, strcat, gets, sprintf, and the scanf family)

• Format String Problems (e.g., [v][f]printf, [v]snprintf, and syslog)

• Race Conditions (e.g., access, chown, chgrp, chmod, tmpfile, tmpnam, tempnam, and mktemp)

• Potential Shell Metacharacter Dangers (e.g., most of the exec family, system, popen)

• Poor Random Number Acquisition (e.g., random).

Flawfinder produces a list of potential security flaws sorted by risk. This risk level depends not only on
the function, but also on the values of the parameters of the function. For example, constant strings are
often less risky than fully variable strings in many contexts. In some cases, Flawfinder may be able to
determine that a construct containing a risky function is actually secure in the context of the program,

2 Note that use of Retina’s auto fix features should be performed with care. It is important to ascertain that any repairs
made by Retina are not contrary to recommended system configurations based on DISA’s Secure Technical
Implementation Guides (STIG), which take priority.

DRAFT FOR INFORMATION PURPOSE

11
FOR INFORMATION PURPOSE

thus reducing false positives. Also, Flawfinder correctly ignores text inside comments and strings (except
for Flawfinder directives).

Flawfinder is quite fast, covering thousands of lines of C code on a typical desktop machine in a matter
of seconds. Flawfinder is released under GNU Public License (GPL) version 2 and therefore is free
software. Note that not every potential coding error that Flawfinder detects is actually a security
vulnerability, and not every security vulnerability is necessarily found. In fact, Flawfinder does not
“understand” the semantics of the code at all; it does only simple text pattern matching. Nevertheless,
Flawfinder can be a very useful aid in finding and removing security vulnerabilities.

2.2.5 RATS (Developer Assessment Tool)

RATS, developed by Secure Software Solutions, is a security auditing utility for C, C++, Python, Perl,
and PHP code. Similar to Flawfinder, RATS scans source code, finding potentially dangerous function
calls susceptible to buffer overflows and Time of Check, Time of Use (TOCTOU) race conditions.3
The goal of the RATS project is not to definitively find bugs, but to provide a reasonable starting point
for performing manual security audits. As its name implies, the tool performs only a rough analysis of
source code. It will not find every vulnerability and will also find problems that are not vulnerabilities,
such as coding mistakes.

RATS is released under version 2 of the GPL. The tool is fairly flexible in terms of defining the type of
vulnerabilities it uncovers. The user can specify what vulnerabilities are reported in the tool’s output
report via both the data contained in the vulnerability databases that are used and the specified setting of
the tool’s vulnerability warning level. Each vulnerability includes a list of files and location information
(line number), followed by a brief description of the vulnerability and suggested action.

2.2.6 Splint (Developer Assessment Tool)

Splint is a tool for statically checking C (but not C++) programs for security vulnerabilities and coding
mistakes. Splint does many of the traditional Lint 4 checks, including unused declarations, type
inconsistencies, use before definition, unreachable code, ignored return values, execution paths with no
return, likely infinite loops, and fall-through cases. More powerful checks are made possible by
additional information given in source code annotations. (Annotations are stylized comments that
document assumptions about functions, variables, parameters, and types.) In addition to the checks
specifically enabled by annotations, many of the traditional Lint checks are improved by exploiting this

3 Note, however, that although RATS and Flawfinder search for similar vulnerabilities, each does so in a different
manner, emphasizing different items and producing different output. Use of both tools is recommended.

4 Lint is a UNIX command that examines C source programs, detecting a number of bugs and obscurities. It enforces
the type rules of C more strictly than the C compilers. Lint is also used to enforce a number of portability restrictions
involved in moving programs between different machines and/or operating systems.

DRAFT FOR INFORMATION PURPOSE

12
FOR INFORMATION PURPOSE

additional information. (Note that before 2002, Splint was known as LCLint. Splint 3.0 is the successor
to LCLint 2.5.)

The following types of problems are detected by Splint:

• Buffer overflow vulnerabilities

• Dangerous macro implementations or invocations

• Dereferencing a possible null pointer

• Using possibly undefined storage or returning storage that is not properly defined

• Type mismatches, with greater precision and flexibility than provided by C compilers

• Violations of information hiding

• Memory management errors, including uses of dangling references and memory leaks

• Dangerous aliasing

• Modifications and global variable uses that are inconsistent with specified interfaces

• Problematic control flow, such as likely infinite loops, fall through cases or incomplete switches,
and suspicious statements

• Violations of customized naming conventions.

Splint is well supported by the Secure Programming Group at the University of Virginia and comes with
extensive documentation on its use. It was written in C; therefore, anyone with a standard American
National Standards Institute (ANSI) C compiler can recompile it for their platform. Splint is a versatile
tool because it can analyze code at many levels of abstraction.

2.3 RUNNING TOOLS FROM TOOLKIT

All of the above tools will be available in the Application Security Assessment Toolkit for use in
assessing vulnerabilities within the applications under development. Depending on what stage of
development (e.g., application source coding, middleware coding, system integration) or type of
application under development (e.g., Web, database), the developer will be able to choose a tool to
help assess vulnerabilities. The developer will be able to pick, choose, or pull tools from the Toolkit that
most appropriately fit the requirements and type of application under development.

DRAFT FOR INFORMATION PURPOSE

13
FOR INFORMATION PURPOSE

3. ASSESSMENT PROCESS OVERVIEW

The assessment methodology using the current Toolkit to validate an application’s compliance with
security requirements can be broken into three distinct phases (Figure 3-1) that are outlined below and
discussed at length in the following sections.

Pre-Assessment: This phase sets the stage for the overall validation exercise. The developer will
categorize the application undergoing assessment; identify security requirements that pertain to that
application type; map those requirements to the capabilities of the current toolkit; select the appropriate
tool(s) to conduct the assessment; develop any manual procedures to supplement any Toolkit shortfalls;
and prepare the test environment. (Section 4)

Assessment: In this phase, the actual assessment of the application occurs through the use of
assessment tools from within the Toolkit. Prior to the tool(s) being employed, it must be properly
configured. After its use, the tool(s) will produce an output report detailing any vulnerabilities
discovered, which must be reviewed and interpreted by the developer. (Section 5)

Post-Assessment: The final phase of the methodology requires the developer to take corrective
actions to repair or mitigate any vulnerabilities discovered during the assessment phase. The developer
must then ascertain whether the application still functions correctly, as designed, without any unintended
side effects. If corrective actions were taken, the developer must repeat the assessment process to

1. Application Categorization
2. Vulnerability and Requirements Identification
3. Toolkit Capability to Requirements Mapping
4. Tool Selection
5. Manual Procedures and Assessment Process
6. Test Environment Preparation

Pre-Assessment

1. Tool Configuration
2. Usage
3. Results

Assessment

1. Corrective Actions
2. Functionality Validation
3. Reassess
4. Capture Lessons Learned

Post-Assessment

Figure 3-1. Assessment Methodology

DRAFT FOR INFORMATION PURPOSE

14
FOR INFORMATION PURPOSE

validate that the application is free from vulnerabilities and in compliance with security requirements.
Finally, the developer must capture any lessons learned. (Section 6)

DRAFT FOR INFORMATION PURPOSE

15
FOR INFORMATION PURPOSE

4. PRE-ASSESSMENT PHASE

The methodology in this phase is an important step in the overall assessment process. Prior to the actual
vulnerability assessment occurring, the developer must have a clear understanding of the Toolkit’s
capabilities with respect to the security requirements that pertain to the application being assessed. The
pre-assessment methodology, as illustrated in Figure 4-1, will prepare the developer to successfully use
the Toolkit as envisioned by helping the developer to

• Categorize the application under development

• Identify the security requirements that must be validated and any vulnerabilities to be detected

• Map the security requirements to current Toolkit capabilities

• Choose the appropriate assessment tool(s)

• Determine if supplemental procedures need to be developed to validate requirements

• Prepare the test environment.

Categorize Application
under development

Identify applicable
requirements
for application

under development

Can capabilities
of current toolkit

be mapped
to identified

requirements and
available tools?

No tool available for
given requirement

Select Tool

A mapping between application
category, available tools,
and requirements exists

Prepare Test
Environment

Develop
Supplemental

Procedure

i.e., Web App, Database,
Server/Network, Middleware…

Supplemental
Assessment

Process Needed for
Given Requirement

NO

YES

Repeat for next
requirement

Repeat for next
requirement

When all relevant requirements
have been mapped

Figure 4-1. Pre-Assessment Flowchart

DRAFT FOR INFORMATION PURPOSE

16
FOR INFORMATION PURPOSE

4.1 APPLICATION CATEGORIZATION

Application categorization, although a seemingly irrelevant and extraneous step in the development
process, is important when using the Toolkit to assess application vulnerabilities. Before commencing a
vulnerability assessment, the developer, by definition, will have a clear understanding of the type of
application being developed. This could range from a database to a Web application, from a database
server to a Web server, from a network to middleware, or a simple stand-alone application. Although
this categorization will be trivial to the developer, it is an important step in the vulnerability assessment
process because each Toolkit component is designed for a specific type of application. Table 4-1 lists
the types of applications that can be assessed using the current capabilities of the Toolkit.

Table 4-1. Application Types

Application Type

Web Application
• IBM Websphere
• Macromedia ColdFusion
• Macromedia JRun
• Lotus Domino
• Oracle Application Server
• BEA WebLogic
• Jakarta Tomcat

Web Server
Database Instance

• Oracle
• SQL Server
• Sybase

Database Server
Operating Systems
Network Devices
Network Services
Host Computer
C Source Code
C++ Source Code
Perl Source Code
Python Source Code
PHP Source Code
HTML Source

Before moving on to the next step, the developer must categorize the application being assessed.
Categorizing the application will become important during the Toolkit Capability to Requirements
Mapping (4.4) when the developer must map the most appropriate tool to the application. In some
instances, a requirements mapping may exist for one type of application (i.e., a Web application) but not

DRAFT FOR INFORMATION PURPOSE

17
FOR INFORMATION PURPOSE

for another (i.e., database). The developer therefore must have a clear idea of the application category
to be able to correctly determine if a mapping does exist. The use of multiple tools may also be
appropriate when analyzing an application that falls into several categories (e.g., a Web application with
a database interface), or when analyzing actual source code in which case multiple developer
assessment tools may be used.

4.2 VULNERABILITY AND REQUIREMENTS IDENTIFICATION

The Recommended Standard Application Security Requirements document (Version 1.1, June 6,
2002) defines and documents a set of recommended security requirements that is common to all
software applications. That document serves as the first step in designing security into applications and
will aid application developers in identifying potential vulnerabilities and security flaws early in the life
cycle of the application.

After the developer has categorized the application currently under development, the developer will
need to identify the relevant security requirements that pertain to the application using the
Recommended Standard Application Security Requirements document.5 Before commencing the
next step, the developer should have assembled a complete list of pertinent security requirements for the
application that is being assessed. This list will be used in the next step to determine which tools within
the Toolkit can be applied for the current assessment.

4.3 TOOLKIT CAPABILITY TO REQUIREMENTS MAPPING

The developer will proceed to use the list of pertinent security requirements to determine which tool
within the Toolkit (if any) can be used in assessing vulnerabilities within the current application under
development. The developer will use the Requirements-Toolkit Capability Map (see Appendix C) to
determine which tools can be used to validate the security previously identified requirements and assess
vulnerabilities within the application. If a security requirement is mapped to an appropriate and available
assessment tool, then the developer can select the tool and be able to assess that requirement in an
automated manner (Section 5). However, if a direct mapping does not exist, then the developer will
have to validate the requirement using supplemental procedures and processes (see Section 4.5).

Consider the example where the developer’s application is a Web application. The developer identified
three requirements pertaining to this application as depicted in Table 4-2. The developer then cross-
references the Requirements-Toolkit Capability Map to identify the tool to run.

5 Note that use of the Recommended Standard Application Security Requirements guide is covered within the guide
itself but not in this Methodology document. Familiarity with the Recommended Standard Application Security
Requirements guide is assumed.

DRAFT FOR INFORMATION PURPOSE

18
FOR INFORMATION PURPOSE

4.4 TOOL SELECTION

After completing the Toolkit capability-to-requirements mapping, the developer will have identified a set
of assessment tools that can be used to validate requirements within the application. If multiple tools
were identified as appropriate, the precise order of their use is left to the developer’s discretion. For
instance, the mapping in Table 4-2 may have identified a Web application tool and a general-purpose
tool as appropriate tools for testing a Web server and Web page. The developer is then ready to
prepare the test environment and begin the assessment process. If no tools were identified, then the
developer must resort to supplemental procedures to validate any identified security requirements for the
application under development.

4.5 SUPPLEMENTAL PROCEDURES AND ASSESSMENT PROCESS

Supplemental procedures and assessment processes will be required if no direct mapping exists
between a requirement and toolkit capability. This may occur when an application is highly customized
for a specific task (and therefore beyond the typical scope of a commercially available tool). In addition,
an application may be a “legacy” application operating on hardware (or software) that is not widely
supported in the environment in which many of the commercially available tools were developed.
Finally, many of the current security requirements contend with either classified data or the use of
encryption—typically areas where many commercially available tools avoid. For example, consider the
mappings in Table 4-3 that are based on the current Toolkit.

Table 4-2. Example of Successful Toolkit to Requirements Mapping

REQ #
QUICK

REFERENCE
REQUIREMENT

VULN.
ADR.

TOOL CATEGORY
MAPPING

4.0.10 High-risk services Avoid use of high-risk services and technologies,
such as Telnet, Simple Network Mail Protocol
(SNMP), and mobile code, in/by applications
unless absolutely necessary.

 • Web Application

• General Purpose

4.2.17 Invalid pathname
references

Whenever a pathname or Uniform Resource
Locator (URL) referenced in the application code is
changed or removed from the system, the
application code must be changed to change or
delete that reference.

V14 • Web Application

4.4.18 Initialization of
variables

If the programming language in which the
application is written does not automatically
ensure that all variables are initialized to zero
when declared:
The application code must explicitly initialize all of
its variables when they are declared.
NOTE: “C” does not provide the necessary zero
initialization of variables.

 • Web Application

• Developer

DRAFT FOR INFORMATION PURPOSE

19
FOR INFORMATION PURPOSE

Table 4-3. Example of Requirements Needing Supplemental Procedures for Assessment

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

4.0.6 Interoperability
with Department of
Defense (DoD)
Public Key
Infrastructure (PKI)

The application’s PKI functions must be
implemented using PKI technology that is
interoperable with DoD PKI. [7]

V3 None. Use
Supplemental
Procedures

4.2.14 Labeling of
Classified data

If the application is either
• Used to create or modify classified

data, OR
• Is a Mission Category I used to create

or modify classified or sensitive data.
The application must apply the appropriate
confidentiality and integrity labels to the data at
the time of creation or modification. These labels
must be understood by the access control
mechanism used to control access to the data.

 None. Use
Supplemental
Procedures

In the ”Tool Category Mapping” column, no direct mapping exists between the requirement and a tool
(indicated by the “None. Use Supplemental Procedures” statement). Therefore, for the application
developer to validate these security requirements, manual procedures or processes will need to be
developed as the current Toolkit does not contain any capability to allow for an automated assessment
to occur.

To successfully validate these types of requirements, the developer will need to devise a method to
manually test the application. As a first step, the developer should refer to the Application Security
Developer’s Guide. The Developer’s Guide was designed to provide guidance and recommendations
to developers interested in securing their applications and as such will provide insight to the developer in
creating a custom methodology for validating requirements that are beyond the capabilities of the toolkit.
At this point, the developer has several options available to validate the requirement. For example, the
developer may—

• Determine that he/she possesses sufficient knowledge on the requirements on hand and will
devise a way to validate them.

• Examine current Security Technical Implementation Guides (STIG) for relevant procedures
for securing the application to meet the requirement.

• Develop a customized script (e.g., a Perl or Python script) to automate the testing process.

Note that occasionally an indirect mapping will occur with regard to a certain requirement for the current
Toolkit. This occurrence, in which an automated tool will provide a means of indirectly validating a
security requirement, is indicated in the right-most column of Appendix C by the phrase, “Indirect

DRAFT FOR INFORMATION PURPOSE

20
FOR INFORMATION PURPOSE

mapping using tool name(s) where tool refers to the tools that can be used indirectly to validate the
requirements.

Consider the example in Table 4-4 below.

Table 4-4. Example of Indirect Toolkit to Requirements Mapping

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

4.6.5 Audit information
captured by
classified
applications

If the application handles classified data:

Each audit record must include the following
information (as relevant for the type of event)
[1,2,18]:

• UserID of user or process ID of process

causing the event
• Success or failure of attempt to access a

security file
• Date and time of the event
• Type of event
• Success or failure of event
• Seriousness of event (violation)*
• Successful or failure of login attempt
• Denial of access resulting from excessive

number of login attempts
• Blocking or blacklisting a UserID, terminal, or

access port, and the reason for the action
• Data required to audit the possible use of

covert channel mechanisms
• Privileged activities and other system level

access
• Starting and ending time for access to the

application
• Activities that might modify, bypass, or

negate safeguards controlled by the system
• Security-relevant actions associated with

periods processing, or the changing of
security labels or categories of information

 Indirect mapping
using database,
Web application,
and general-
purpose tools

The database, Web application, and general-purpose tools, can all be used to indirectly validate
Requirement 4.6.5. Running these tools will deposit traces of their behavior in audit logs. This will only
occur, however, if auditing is correctly enabled on an application. The developer can use these three
tools to generate audit logs and then manually test them to validate the requirement by analyzing what
behaviors were recorded. Thus, indirect mappings can be considered a hybrid between a supplemental
process and a capability provided by an automated tool within the Toolkit.

DRAFT FOR INFORMATION PURPOSE

21
FOR INFORMATION PURPOSE

It is imperative that all security requirements be validated, regardless of the methods chosen by the
developer. As the Toolkit evolves with time, it will be expanded to include more tools capable of
validating more requirements in an automated manner, thereby easing the burden placed on the
developer to create a manual process or procedure. However, until all requirements for all types of
applications are mapped to an automated tool, the developer will have to rely on manual assessment.

4.6 TEST ENVIRONMENT PREPARATION

The Application Security Assessment Toolkit should be employed in an isolated or closed network test
environment to shield an organization’s production networks from the assessment tools. Many of the
tools employ scanning techniques that are designed to probe and disable their targets while searching for
vulnerabilities. These techniques will activate intrusion detection devices within a network indicating that
an internal attack on the network was under way, unnecessarily alarming network and security
administrators.

To circumvent this problem, the Application Security Assessment Toolkit should be installed on a

closed and isolated test network. Figure 4-2 illustrates a potential network layout.

To test an application for vulnerabilities and compliance with security requirements, the developer will
need to install the application on one of a set of target host computers within the test network. Typically,
there will be several target hosts varying in operating system and hardware, each with its own statically
defined IP address. These target hosts will be connected via a network device, such as a network hub,

Figure 4-2. Isolated Test Network

DRAFT FOR INFORMATION PURPOSE

22
FOR INFORMATION PURPOSE

to form a simple network. An additional Intel-based (Windows operating system) computer will host the
Toolkit and will also be connected to the network.

The developer will need to install the application under test on the appropriately configured target host.
Then, using the Toolkit host, the developer should proceed to test for vulnerabilities. Note that because
of the myriad types of applications that can be built and tested, the exact details of configuring the target
host will be left up to the developer.

DRAFT FOR INFORMATION PURPOSE

23
FOR INFORMATION PURPOSE

5. ASSESSMENT PHASE

In this phase, the user of the tools will configure and run the tools identified in the pre-assessment phase
and then interpret the results:

• Tool Configuration. The developer will configure connections between tool and the
application, as well as any internal settings within the tool.

• Tool Use. Once configured, the tool will be explicitly started (via a GUI switch/button or
from the command line) to perform its operation automatically.

• Tool Output. Once the tool’s scan is complete, the tool will typically output its results into
some form of report or file (which can be configured for verbosity). The developer will read
and interpret this output file to determine what, if any, vulnerabilities exist within the
application.

The process for configuring, using, and interpreting each tool within the current Toolkit (as described in
Section 2.2) is outlined below.

5.1 SPIDYNAMICS WEBINSPECT

This discussion is based on WebInspect version 2.6.8 and is intended to be a supplement to the
WebInspect User’s Guide.

5.1.1 Tool Configuration

 The developer will configure the tool for use in a development environment (nonproduction) as this tool
can have detrimental affects on a Web application during the process of testing.

5.1.1.1 Smart Update. The Smart Update feature allows the user to download the latest
vulnerability, adaptive agents, and product updates from SPI Dynamics to ensure that the tool is
functioning with the latest technology. The Smart Update feature should be used before each scan is
initiated to ensure the latest vulnerabilities are being checked for. (Note that if product updates are
available, they may be skipped and installed later.) If the vulnerability database becomes corrupted, the
Refresh Database feature may be used to refresh and restore your database.

5.1.1.2 Target Selection. The selection of the target is made via the Uniform Resource Locator
(URL) field. The target selection can be in the form of either a complete URL or an Internet Protocol
(IP) address. If only certain portions of the Web site need to be tested, a starting directory root can be
appended to the end of the supplied URL or IP address.

DRAFT FOR INFORMATION PURPOSE

24
FOR INFORMATION PURPOSE

5.1.1.3 Form Input. If the Web application being tested contains pages with submittable forms,
WebInspect is capable of automatically filling in and submitting the forms. WebInspect will fill in the
forms automatically with data provided from the text file “formvalues.txt”.

In the formvalues text file, comment lines begin with the semicolon (;). The fields used to fill the forms
are one per line, with three columns on each line. The first column is the name to search when
identifying forms to fill. If the name to search for is preceded by an exclamation point (!), then only
exact matches will have their form filled. The second column contains the data that will be inserted when
a form with the name from the first column is identified. The third column contains one of three options:
0, 1, or !x where the x is a number. These three options declare the maximum amount of characters
that a form field will be filled to be a match. The definitions of the options are as follows:

• 0 – ignore the maximum length

• 1 – populate the field with the maxlength of characters

• !x – maxlength of the field must be equal to x to be considered a match.

A shortened example file might be as follows:

 ; Comments
 ; Comments
 first Bob 0
 !mid E 0
 last Zmuda 0
 phone 123-456-7890 !12
 phone 1234567890 !10
 add 123+Fake+Address+Way 0

This translates to the following when certain form fields are encountered:

• first—“Bob” will be filled into the form

• middle—There is no match in the example as a result of the ! before mid; nothing will be filled
into the form

• last—“Zmuda” will be filled in to the form

• phone—If the field is of length 12, “123-456-7890” will be filled into the form

• phone—If the field is of length 10, “1234567890” will be filled into the form

• phone—If the field is of a length other than 10 or 12, nothing will be filled into the form

• address—This matches add, so “123+Fake+Address+Way” will be filled into the form.

DRAFT FOR INFORMATION PURPOSE

25
FOR INFORMATION PURPOSE

5.1.1.4 Policy Selection/Creation. When scanning and testing, WebInspect bases its checks and
tests according to a user-selectable policy. The policies available by default are Quick Scan, Safe
Scan, Full Scan, Assault Scan, and Blank Scan. These policies are defined below.

• Quick Scan—includes an automated and logical link exploration (crawl) of the server in addition
to performing checks for known vulnerabilities in major packages and unknown vulnerabilities at
the Web server, Web application server, and Web application layers. A Quick Scan does not
perform checks that are likely to create DoS conditions.

• Safe Scan—is a limited version of the Quick Scan. It includes a subset of the checks included
in the Quick Scan, eliminating checks that will trigger DoS conditions on systems of any
sensitivity.

• Full Scan—is an extension of the Quick Scan. It includes all the checks possible, including
those for minor packages. The only checks that the Full Scan does not perform are those that
are likely to create DoS conditions.

• Assault Scan—is the scan that will perform all checks, including those vulnerability checks that
can potentially create DoS conditions.

• Blank Scan—is an empty scan that does not check for anything. It can be used as a starting
point and allow the user to individually add each check desired. This is the recommended
course of action because even though the default scans may appear safe by their respective
labels, there is the possibility that specific applications could still be adversely affected by
WebInspect.

Although it is easy to blindly use one of the above scan policies, it is recommended that users
familiarize themselves with all the options within the policies and then create a custom policy (using
the Blank Scan policy). This is recommended so that the user becomes familiar with every check
and test that is to be performed and is able to identify and eliminate performing potentially
dangerous checks and tests. Lastly, as a failsafe, all testing should be performed in a test
environment in which the developer can revert to a previous state or quickly reload the application if
it becomes corrupted by the tool.

When creating a custom scan policy, custom agents may also be added. Custom agents are actually
custom scripts that can be developed from within WebInspect to test for nearly anything that
WebInspect is capable of testing.

5.1.1.5 Settings. Settings for the WebInspect can be accessed from the Tools->Settings menubar.

• General

• Localhost Proxy Request and Response Rules

• 404 Page Settings

DRAFT FOR INFORMATION PURPOSE

26
FOR INFORMATION PURPOSE

• Crawler Settings

• Attack Settings

• Proxy Settings.

The General Settings include:

• Connection Settings—change the length of time, in milliseconds (ms), that the tool will wait
before canceling a request when there has been no response from the Web application. The
default setting is for 2000 ms, or 2 seconds. This should be adjusted up (higher) if it is known
that the Web application will take more time on average to respond to requests, as a result of a
slow connection or slow Web application. Adjustments down may be possible to increase the
speed of the scans, but only when there is confidence that this will not cause requests that are
valid to time out.

• Authentication Settings—allow for Basic and NT LAN Manager for Microsoft Windows
(NTLM) authentication to occur when provided with the necessary credentials.

The Localhost Proxy Request and Response Rules allow for WebInspect to be used as a proxy
server for surfing the Web application. WebInspect will then capture the information from the Web
application as you browse and click through the site. The settings for this feature are further explained in
detail within the WebInspect User’s Guide.

Figure 5-1. Possible 404 Page Errors

The 404 Page Setting is one of the most important settings to configure. When browsing a Web
application, anytime a file or Web site is not found, an error 404 not found message is returned (Figure
5-1). WebInspect uses this error code to identify whether a request has succeeded or failed. In many

DRAFT FOR INFORMATION PURPOSE

27
FOR INFORMATION PURPOSE

cases, Web applications modify the standard error 404 page to create custom 404 pages. If
WebInspect is unable to recognize these custom error 404 pages, it can cause the results of
WebInspect to be full of false positives. For example, when the WebInspect requests a certain file that
contains a known vulnerability, WebInspect must be able to accurately determine if the file exists or not.
If a custom 404 page is returned that WebInspect does not recognize, WebInspect will record that the
file was found when it actually was not. This creates a false positive, or a condition in which a
vulnerability is identified when the vulnerability does not actually exist.

The Crawler Settings allow the user to custom configure headers and regular expressions to be
included in the crawl. In addition, these settings allow the user to further specify what will or will not be
crawled. The headers that can be configured are those used by the HTTP data exchanged with the
Web application while conducting a crawl. By adding custom headers, such as “Crawling by
WebInspect on MM/DD/YY,” all requests to the Web application will be easily identified within the
Web server logs. In configuring what will or will not be scanned, Table 5-1 lists the possible Crawler
Settings available.

Table 5-1. Available Crawler Settings

Setting Description

Exclude Extensions File Extensions that should be ignored during crawl
Allow these hosts to be crawled Additional hosts that should be crawled
User-Defined Regular expressions
for URLs

Add regular expressions to a crawl when beneficial to
completing a crawl

Do Not Crawl Hosts that should not be crawled
Include Referrer Header Yes/no on including the referrer information on users

coming from other sites
Use URL Sanity Checker URL sanity checker to help remove requests that use

javascript
Max URL Visits Maximum number of URLs to visit during the crawl, 0

sets to unlimited
Request Timeout (sec) Timeout period for a request to fail
Request Method Alternative methods of requesting Web pages, such as

Get, Post…
Crawl Depth Depth into Web application tree crawl should go, 0 sets

crawl depth to unlimited

The Exclude Extensions options should be reviewed carefully. Its main purpose is to avoid excessive
time consumption during testing while downloading graphics and other types of files that do not cause
vulnerabilities. However, if those certain types of files are required to be available for download from a
Web application, then the user should ensure that the corresponding file extensions are not on the
Exclude Extensions list. For example, if the user wants to ensure that the Web application does not
contain any downloadable Power Point slides (.ppt), then by removing the .ppt extension from the

DRAFT FOR INFORMATION PURPOSE

28
FOR INFORMATION PURPOSE

default Exclude Extensions option, WebInspect will be able to identify any instances in which .ppt files
are available for download. In addition, certain file types may contain information that should not be
disclosed, such as a PDF file (.pdf) that contains the security policy for the network the Web application
resides on. Consequently, close attention should be paid to which extensions are placed on the Exclude
Extensions list.

It is important to complete the Do Not Crawl list so that parts of the Web application the user does not
want to test are not included in the testing. In addition, if WebInspect’s license allows for any host to be
scanned, it is important to accurately list allowed hosts so that WebInspect’s crawling and testing does
not extend to hosts not belonging to the user or outside the testing authorization. If the tools are used in
a development environment as recommended, this can be further ensured by testing on a closed
network containing only the testing computer and the Web application host computers.

To obtain a complete crawl and test of the Web application, the Max URL Visits and Crawl Depth
options should be set to 0. This sets the fields to unlimited so everything with a link to it should be
crawled and identified for testing purposes.

The Attack Settings contain an area in which to add header information to all requests that are used
during the attack phases of the tool use. This is similar to what is done with the Crawler Settings during
a crawl. By adding custom headers, such as “Attack by WebInspect on MM/DD/YY,” all requests to
the Web application during the attack phase will be easily identified within the Web server logs.

The Proxy Settings can be used to set up any proxy information needed when a proxy is required to
browse to the Web application being tested. In addition, any Client Certificates required can be set up
with this option.

5.1.2 Tool Use

5.1.2.1 Modes. After configuring the tool and beginning the process to start a scan, the following four
modes of scanning possible:

• Scan

• Crawl

• Step Mode

• Open Saved Scan.

The Scan mode will fully crawl and map out the Web application’s tree and then apply all attack
methodologies to the site. All attack methodologies that are to be applied are determined by the policy
that is selected for use.

DRAFT FOR INFORMATION PURPOSE

29
FOR INFORMATION PURPOSE

The Crawl mode is used to only fully crawl and map out the Web application’s tree. Attack
methodologies will not be applied to the site until the Audit button is pressed.

The Step Mode allows for the user to set WebInspect up as a proxy and to record your actions as you
navigate the Web application. This allows the user to manually map out the sections that are desired to
be included in the audit. Attack methodologies can then be applied to the sections manually crawled by
pressing the Audit button.

The Open Saved Scan mode allows the user to open previously saved scans for further evaluation,
crawling, or auditing.

5.1.2.2 Usage Flowchart. This section describes an overall strategy to using WebInspect. When
performing a test, the following sequence of steps should be followed, looping back as necessary (see
Figure 5-2):

• Smart Update
• Crawl
• Manual Crawl
• Audit
• Information and Reporting
• Patching, Fixing, and Repairing.

Smart Update

The first step to starting any scan is to run the Smart
Update. As was noted earlier, it is important to ensure
that the tool is operating with the most up-to-date
techniques for discovering and identifying vulnerabilities
in the Web application

Crawl
The second step to starting the scan is to run a crawl.
The crawl will identify and map the entire structure of
your Web application. From within the scan wizard,
select the Crawl setting, the URL or IP address to scan,
and the box to allow submission of forms during the
crawl if desired. When allowing forms to be submitted,
make sure to configure the formvalues.txt file with
appropriate data to fill in the fields that may be
encountered while crawling the Web application.

Once the type of crawl is selected and the form values
are determined, the policy to use for the scan needs to

Figure 5-2. WebInspect Usage Flowchart

DRAFT FOR INFORMATION PURPOSE

30
FOR INFORMATION PURPOSE

be selected. The policy selected here should be the custom policy that has been developed specifically
for testing the Web application. If in a development environment and the appropriate back-ups of the
Web application have been made, the Assault policy may be used to fully test the Web application. If it
is found that when the Audit occurs there are problems completing the Audit, then adjustments may be
needed to reduce the checks of the Assault policy down to a safer set. Once these adjustments are
made, the new custom policy should be selected and used in the future.

Manual Crawl
After the crawl has completed, the findings and tree structure of the Web application should be
reviewed and edited as necessary. If any directories are not found that should have been included in the
test, then these directories should be manually added to the tree structure. If it is found that any
directories were found that are not to be included in the testing, then these should be removed.

In the site map of the Web application, right clicking with the mouse on any directory or file within the
tree structure will bring up a menu of options. Table 5-2 lists these options.

Table 5-2. Manual Crawl Options

Menu Item Description
Copy Copy the URL of the directory or file
Edit Session Edit the request within the Request Editor to make new custom requests
Remove Children Remove any files or directories beneath the current directory selected
Manual Step-Thru Use WebInspect as a proxy to manually step through and add directories or

files to the tree structure
Crawl Start a new crawl from the point selected; useful if earlier crawl was

restricted in scope
Crawl 1 Depth Level Start a new crawl from the point selected, but only go a depth of one deeper
Ignore Vulnerability If a vulnerability is identified with which you do not agree, remove from the

findings
Help Open the WebInspect help dialog box
View View associated pieces of the tree structure

Using the above methods, the user should be able to completely map out all known pieces of the Web
application quickly and accurately. In addition, the user should be able to remove any pieces of the
Web application that should not be assessed further. Any parts removed should be noted and later
added to the restrictions in the settings if possible to save time in future scans.

If there is not enough information in the above, the window on the right provides additional information.
When a section of the site in the Site View tree structure of the Web application is selected, three tabs
are available in the right window: Report, Session Audit, and Properties.

The Report tab will summarize the findings for any file or directory that is selected if there are any. The
Session Audit tab will provide a means to review and modify the policy used for audit on the particular

DRAFT FOR INFORMATION PURPOSE

31
FOR INFORMATION PURPOSE

files or directories. The Properties tab will provide a complete log of what requests were sent out and
what responses were received for each directory and file that is found. The Table 5-3 lists the
information that is recorded.

Table 5-3. Properties Tab Options

Command Description
Show Request The raw request that was sent to the Web application is recorded here
Show Response The raw response for the above request is recorded here
Web Browser The response for the above can be viewed within a browser here
Show Details The details of the request can be found here, such as Response Code,

Request Method, Response Time,…
Show Links Show all links within requested page that were found
Show Comments Show all comments within requested page that were found (“<!…”)
Show Text Show all text that was found within requested page
Show Hidden Show any hidden fields that were found within requested page

(type=”hidden”)
Show Forms Show any forms that were found in the requested page (“<FORM…”)
Request Editor Open request from above in the Request Editor
Help Open the WebInspect help dialog

Audit
Once the Manual Crawl has been completed, the user can start the audit. However, before starting, it is
important to make sure any issues from the crawl have been corrected within the settings and any policy
changes needed have been implemented. To start the audit, click the Audit button and wait for the audit
to complete.

As the audit runs, any vulnerabilities discovered will appear in the lower window and the user is allowed
to view them and create reports at any time; however, it is recommended that this not be done until the
audit has been completed. Note that the time for the audit to complete will depend on the number of
links identified in the crawl, the policy selected for the audit, and the timeout for requests to fail.

Information and Reporting
As described in the manual crawl process, a wealth of information exists that can be viewed from within
the tool before any reports are even generated. From this point, two options are available to the user:
(1) use the information found within the tool to manually crawl and or request pages from the Web
application, and (2) simply run the reporting features and generate reports that summarize and list the
findings. The tools capabilities, combined with a user’s expertise, can allow for multiple loops in the
flowchart to occur before a user is satisfied with their findings. Because a complete listing of all the
possible vulnerabilities can never be guaranteed, users must decide when they have exhausted their
expertise and the features of the tool in discovering and identifying the vulnerabilities present in the Web
application.

DRAFT FOR INFORMATION PURPOSE

32
FOR INFORMATION PURPOSE

At any stage in the process, a report can be generated. There are four main types of reports available
within WebInspect:

• Simple Report
• Executive Report
• Custom Report
• Trend Analysis.

The Simple Report is a concise summary of the vulnerabilities found, along with summary descriptions
of the vulnerabilities found, how the vulnerability can be exploited when information is known,
information on fixing or patching the vulnerability, and references for where additional information can be
found for that particular vulnerability.

The Executive Report is a one-page graphical summary of what vulnerability types have been found
along with some other summary graphs of the associated vulnerability information. This includes a table
with the number of each type of vulnerability found (Critical, High, Medium, Low, Info), the number of
each issue type found (Application, Operational, Custom Check), and the number of each type of
application data that has been found (Comments, Cookies, Email, Hiddens, Scripts, Web Forms, Java
Scripts). The type of each vulnerability and issue found are then placed into graphical pie charts to
illustrate percentages for each.

In addition, there are two bar charts that show the types of files that were analyzed (blank, .asp, .aspx,
.dll, .exe, .htw, …) and the attack groups where vulnerabilities were found (Directory Enumeration,
Web Application, Unknown Application Testing, Web Servers, WebInspect Internal).

The Custom Report can be broken into two separate pieces, or remain combined. The two pieces
are the custom vulnerability report and the custom application report. The custom vulnerability report
allows for any or all of the vulnerability classifications to be included in the report. This includes critical,
high, medium, low, and info classifications of the vulnerabilities. The custom application report contains
the data that is found in the Information part of Site View, or the left window of the tool. This data is
shown in Table 5-4.

Table 5-4. Data Reporting Options

Application Setting Description
Email Report any email addresses that were found
Hiddens Report any hidden fields that were found
Comments Report any comments that were found
Cookies Report any cookies that were found
Key Word Search Perform key word searches on expressions added by user. These can be

regular expressions also
Forms (Post From) Report any forms you can post from that were found
Scripts (Post To) Report any scripts you can post to that were found
Action Report on any action (POST, GET, PUT, INDEX) found

DRAFT FOR INFORMATION PURPOSE

33
FOR INFORMATION PURPOSE

Java Script Report on any Java Scripts that were found
Response Status Perform response status search on input by user, such as identifying pages

with response codes of “403”
The Trend Analysis scan allows the user to compare either two previous scans, or one previous scan
with the current scan. The report generated will compare the number of critical, high, medium, and low
vulnerabilities between the two selected scans. It will also generate some bar graphs to highlight the
changes.

Patching, Fixing, and Repairing
Once the reports are generated and the findings are reviewed, any vulnerabilities discovered should be
patched, fixed, repaired, or mitigated to a state where the level of risk is considered acceptable.
Because this effort will require changes in some form to the Web application, any assumed level of risk
of the Web application is no longer valid. Anytime changes are made to a Web application, new and
potentially higher risks are introduced. Therefore, it is very important to consider every change to be
implemented before acting, log all changes that are made, and to start over from the beginning to
reevaluate the risk level and vulnerabilities that may be present in the Web application. Through this
continuous cycle of identifying potential vulnerabilities and repairing them, a more secure Web
application can be designed. This will not ensure total security without any risk, but it will help to greatly
reduce the risk level.

5.1.2.3 Extra Tools. WebInspect offers a few extra features and tools that are outlined below.

Request Editor. The Request Editor allows the user to edit requests and then resend them to the Web
application. The responses can then be viewed either in raw HTML or in a browser. This is useful to
modify requests that have already been sent during the scanning and testing process when reviewing the
results.

Regex Tester. The Regex Tester can be used to verify regular expressions. Regular expressions are a
means of generically identifying a string with the use of a pattern. An example of this would be searching
for a number between 0 and 9. One method would be to individually search for each number. A
regular expression to accomplish this in one search would be “[0-9]”. Expressions can be much more
complex, so the Regex Tester can be used to test and verify a regular expression before use. Regular
Expressions may be used in Request Rules, Response Rules, and Crawler Settings.

Web Discovery. The Web Discovery utility is a basic port scanner. This utility will allow the user to
determine what ports are open on an IP address. This can be useful in identifying additional unknown
ports an IP address may have available.

Encoders/Decoders. The encoders and decoders utility can be used to either encode or decode the
following:

• Base64
• Hex
• URL Encode

DRAFT FOR INFORMATION PURPOSE

34
FOR INFORMATION PURPOSE

• Unicode (Latin)
• MD5.

5.1.2.4 Command Line. WebInspect can be operated from the command line to easily define a scan
to take place. To schedule a scan, a command similar to UNIX cron can be used. Scheduling a scan
can be useful to automatically test changes that are made every day in the development environment
before they are scheduled to be updated on the production environment. Command line execution is
accomplished with the program wi.exe with the flags shown in Table 5-5.

Table 5-5. Command Line Flags

Flag Definition
-r <filename> Export report to <filename> (HTML report only
-a user:password Basic Authentication
-L Limit scan to root URL
-h <url> URL to scan
-policy <filename> Policy file to be used (*.apc)
-S Saved scan file name
-? or /? Help
/stop Stop WebInspect

For example, to start a scan of the example site using the assault policy and outputting a report, the
following command would work:

 wi –h http://www.example.com -r example-report.html –policy Assault.apc

5.1.3 Interpreting Tool Output

At any time, all the information from the scans performed by WebInspect is available to the user. This
includes all requests and responses made by WebInspect during the test process. This includes the site
tree structure and information found within the Site View window along with report summary
information on findings from the crawl and audit from the Report tab. In addition, the Properties tab
includes all of the requests and responses that were sent or received by WebInspect along with further
key information from the requests and responses highlighted. Further information and elaboration about
these features can be found in Section 5.1.2.2.

The main information discovered by the tool will be the vulnerabilities that are identified. These can be
found in the listings of the Alerts in the bottom window of the WebInspect screen. By selecting a
vulnerability from this screen, it will then be highlighted in the Site View window. If the vulnerability
exists in multiple locations of the Site View, a selection box will pop up to allow for selection of which
location to are seeking information from.

DRAFT FOR INFORMATION PURPOSE

35
FOR INFORMATION PURPOSE

Once the vulnerability is highlighted within the Site View window, the Report and Properties tabs will be
available in the right window. By selecting the Report tab, the right window will contain a Summary
report of the item selected in the Site View window. If the finding is also a vulnerability selected form
the Alerts window, then additional information may be provided, such as Execution, Fix, and
References. The Summary provided will contain a brief summary as to why the finding is or is not a
vulnerability. The Execution part will explain how the vulnerability can be taken advantage of if there are
publicly known methods. The Fix section will provide the recommended action the user should take to
patch the vulnerability. The References section will provide alternative references for additional
information on the vulnerabilities found when available.

If the specific requests and responses are not needed to be reviewed by the user, then a report with the
Summary, Execution, Fix, and References can be generated by the tool. In addition, other types of
reports and summaries of information can be included within the reports generated. The types of
reports that can be generated and the information that can be found within them are detailed further in
Section 5.1.2.2.

The vulnerabilities identified by WebInspect will be placed into five categories. These five categories
are critical, high, medium, low, and info. These are determined based on the risk levels that
WebInspect has placed each vulnerability within. Note that the risk level that WebInspect assigns may
not correspond to the risk level assigned by the developer as it pertains to his environment or security
policy. Consequently, no vulnerability at any risk level should be ignored when risk mitigation strategy is
being developed. Risk mitigation for an “Info” category vulnerability could be just as important as that
of a “Critical” level vulnerability.

Figure 5-3. WebInspect Custom Report Example

DRAFT FOR INFORMATION PURPOSE

36
FOR INFORMATION PURPOSE

In addition, key information will be recorded in the Information part of the Site View window that can
be added into the custom report using the Custom Report -> Application sections when generating the
reports (see Figure 5-3).

5.2 ISS DATABASE SCANNER

This section is a supplement to the ISS Database User Guide and other ISS Database Scanner
documentation. All material in this section is based on ISS Database Scanner version 4.2.

5.2.1 Tool Configuration

ISS Database Scanner is designed to run on a Windows platform while scanning Oracle, Sybase, and
Microsoft SQL Server databases on a variety of UNIX and Windows-based systems. Upon starting
the tool, there will be a “Welcome To Database Scanner” window with four options from which to
choose: Scan Database, Set Security Policy, Review Results, and Password Strength.

Configure Connections

Before a scan of a database can be performed, the connections between ISS Database Scanner and the
database to be tested must be configured. This effort is accomplished through the Configure
Connections menu. To access this from the tool, select the Scanner -> Configure Connections
menubar. Then, follow the instructions from the user guides in configuring a connection to the database
type that is to be scanned.

Set SecurityPolicy

ISS Database Scanner performs database scans according to the security policy that is selected or
developed. There are six built-in security policies, ranked as Levels Two through Seven. The Level
One security policy acts as an inventory and classification of the overall system and is included as a
separate policy within the tool.

The Level Two policy tests the risk of compromise from simplistic attacks. This policy checks for
authentication vulnerabilities such as the following:

• Blank or easily guessed passwords

• Inappropriate registry security

• Default logins and passwords

• Inappropriate configuration settings

• Plaintext passwords in the registry or other files.

DRAFT FOR INFORMATION PURPOSE

37
FOR INFORMATION PURPOSE

The Level Three policy tests for vulnerabilities to external system compromise from automated attack
tools. This policy checks for authentication vulnerabilities such as the following:

• Brute force login attacks

• DoS attacks

• Protocol sniffing exploits.

The Level Four policy tests resistance to password cracking and susceptibility to external compromise
from the very knowledgeable attacker. This policy checks for system integrity vulnerabilities such as the
following:

• Buffer overflow exploits

• Authentication compromises in automated tools

• Compromises via Web tools or database access methods.

The Level Five policy tests resistance to local users gaining enhanced or system administrator privilege
to access unauthorized or restricted information. This policy checks for system integrity vulnerabilities
such as the following:

• Inappropriate ownerships

• Inappropriate permissions

• Inappropriate privileges

• Extended stored procedures and configuration settings that lead to unauthorized access.

The Level Six policy tests the integrity of the underlying operating system configuration on which the
database is installed. This policy checks for system integrity vulnerabilities that could result in accidental
or malicious changes, such as the following:

• Missing operating system service packs

• Missing operating system updates

• Missing operating system patches

• Unrecognized operating system file changes

• File permissions on critical operating system files.

DRAFT FOR INFORMATION PURPOSE

38
FOR INFORMATION PURPOSE

The Level Seven policy tests the integrity of application data and customer specific application
configurations against accidental or malicious changes. This policy checks for system integrity
vulnerabilities such as the following:

• Missing operating system service packs, updates, or patches

• Missing database service packs, updates, or patches

• Poor audit trails

• Weak backup procedures

• Unrecognized database file changes

• Trojan horses in stored procedures.

A custom policy can also be developed. This can be accomplished by selecting the Set Security Policy
button from the Welcome to Database Scanner window and then selecting “<New Security Policy>”
from one of the three database policies and then the Open button. A new policy name should be typed
in and the specific checks desired should also be checked.

Options

ISS Database Scanner options are accessible through the Scanner -> Options menubar. From the
window that opens, there are four category tabs from which to choose: Licensing, Scanning Options,
Sample Data, and Maintenance. The Licensing tab allows for licensing to be established for the
databases that are licensed to for scanned. The Scanning Options tab allows for the configuration of the
method used to query registry information along with the timeout for Database Scanner when waiting of
results for the server being scanned. The query registry information method may be either Use
Extended Stored Procedures or Use Win32 API. The timeout is in seconds and is valid only when
scanning Microsoft SQL Server or Sybase databases. The Sample Data tab is for selecting either
Sample Data or Live Data to use. Live Data should be used when performing an actual scan. Then,
Maintenance tab allows for the compaction of the database the results are stored within. This can be
implemented manually, or set up to run automatically based on the number of days since last compact,
or when the database reaches a certain size.

5.2.2 Tool Use

ISS Database Scanner allows for three types of scanning:

• Full Audit Scan

• Penetration Testing

• Password Strength Test.

DRAFT FOR INFORMATION PURPOSE

39
FOR INFORMATION PURPOSE

Full Audit Scan modes assess the database and operating system settings to determine whether the
database server security complies with the specified security policy. This type of scan can also include
the full range of Password Strength Tests. This type of scan requires the user to provide a password to
access the selected database server.

Penetration Testing mode attempts to break into your database server without knowledge of a
password. This method attempts to replicate the techniques that an attacker attempting to compromise
the security of your database server might use. If the penetration testing mode is successful, there is the
option to start a Full Audit Scan of the compromised database. (Note that the Penetration Test mode is
accessed via the Scan Database menu.)

The Password Strength Test mode allows for password analysis checks to be run against the
database without running a Full Audit Scan. These checks are the same ones within the Full Audit
Scan, but run separately. The following password checks are run:

• Dictionary password attack

• No passwords on account

• Same password as account, with numbers appended at end

o 1 to 100 for Oracle

o 1 to 9 for Microsoft SQL Server

o 1 for Sybase

• Password is reverse of account

• Same as server name (for Oracle).

To implement and run any of the above three types of scans, the developer should follow the
instructions in the user guides to run a Full Audit Scan, Penetration Test, or Password Strength Tests.
The Full Audit Scan and the Penetration Test can be accessed by selecting the Scan Database button,
whereas the Password Strength Tests can be accessed by selecting the Password Strength button.
When performing a Full Audit Scan, the settings shown in Table 5-6 are available.

Table 5-6. Full Audit Scan Options

Settings Description
Server Name of the server to scan
Trusted (SQL
Server Only)

Use Windows NT authentication to make connection

Account Account used to connect to the server for standard authentication
Password Account Password used to connect to the server for standard authentication

DRAFT FOR INFORMATION PURPOSE

40
FOR INFORMATION PURPOSE

Policy Security policy used to scan the database (level 2 to 7, or custom)
Type Type of Server (Microsoft SQL Server, Oracle, Sybase Adaptive Server)
Host Address Host name or IP address of computer database server runs on
Host Account Unix account or Windows NT user name for the operating system the database

server runs on

Host Password Password for the designated Host User Name
To complete a full security test of a database, the Full Audit Scan mode should be used. In this mode,
the tool will perform a full security audit of the database as set by the security policy. A custom security
policy that has been developed for the database to be scanned should be used to ensure all required
tests are performed. When performing a test, the following sequence of steps should be followed,
looping back as necessary. (This sequence is illustrated in Figure 5-4.)

1. Policy Selection/Creation
2. Full Audit Scan
3. Report/Info
4. Fix/Patch.

If testing from an external standpoint is desired,
the Penetration Testing mode should be used. In
this mode, the tool will perform tests from an
external standpoint with the option to complete a
Full Audit Scan if internal access is found. The
Full Audit Scan should use a custom security
policy that has been developed for the database
to be scanned should be used to ensure all
required tests are performed. When performing
a test, the following sequence of steps should be
followed, as illustrated in Figure 5-5 to the right.

Figure 5-4. Database Scanner Usage

Figure 5-5. Testing Sequence

DRAFT FOR INFORMATION PURPOSE

41
FOR INFORMATION PURPOSE

5.2.3 Interpreting Tool Output

To review the results, click the Review Results button from the main Welcome to Database Scanner
window. Selecting from a list of possible types of reports or information to include in the overall report
can then develop custom reports. The two main reports to view should be Summary of Violations and
Violations Details. These reports will summarize the violations of the security policy that were
identified in addition to providing detailed information for every violation identified. (See Figures 5-6 and
5-7.)

A risk level of high, medium, or low is used to categorize the violations identified. Each violation
identified will be listed in the Violations Details report with a detailed description of the violation along
with fix information for correcting the violation.

After patching or repairing any discovered violations, a new scan should always be performed. This is
especially important when certain violations are ruled as false-positives and are not patched. The results
of this scan should subsequently be evaluated to ensure that the patching methodology used did not
create any new violations. All new violations should be accepted or patched/repaired. This process
should continue until the application is brought to an acceptable risk level.

Figure 5-6. Violations Detail Example Report Example

DRAFT FOR INFORMATION PURPOSE

42
FOR INFORMATION PURPOSE

Additional reports can and should be generated. For more information about the different types of
reports that can be generated, please see the documentation provided by ISS.

5.3 EEYE RETINA

This section is a supplement to the Retina Network Security Scanner document, which is also the
user guide for the Retina scanner. All material in this section is based on Retina version 4.8.59.

5.3.1 Tool Configuration

This section further describes a normal configuration of the tool for use in a development environment
(nonproduction). This tool is able to simulate active hacking techniques that are potentially dangerous.
This tool should be used only in production environments if an expert user has customized and reviewed
the tests to be run.

Figure 5-7. Summary of Violations Report Example

DRAFT FOR INFORMATION PURPOSE

43
FOR INFORMATION PURPOSE

5.3.1.1 Update. Upon starting Retina, the user will be able to start an automatic update of the
product, if this feature is enabled as described in the General Option in Section 5.3.1.5. These updates
can be retrieved either through HTTP or HyperText Transfer Protocol Secure (HTTPS). It is
recommended that the update be retrieved using HTTPS because this is a more secure method.

The user is not required to update, but updating is recommended because updates can increase the
number of vulnerabilities that may be found and decrease the number of false positives that may be
identified. If at any time during the use of the Retina an update is desired, this can be accomplished
through the Tools->Updates menu bar. Note that this will require Retina to exit before the updates are
retrieved; therefore, any current work should be stopped and saved completely before updates are
attempted.

5.3.1.2 Target Selection. Retina target selection is accomplished with the use of IP addresses.
Multiple IP addresses can be supplied to enable scanning of multiple hosts, if within license restrictions
of the product. The IP addresses can be placed either within the address bar window, or using the
menu bar option Edit->IP Range.

Note that when defining the address space via the address bar window, the addresses can be defined as
those to be scanned and those to be excluded. All addresses placed in parentheses are those to be
excluded, and the ones without are those to be scanned. In addition, URLs may be included in the
address bar to be scanned.

For example, the following placed in the address bar window will scan all hosts in the range
192.168.0.1 to 192.168.0.32 except for 192.168.0.4 and 192.168.0.6 to 192.168.0.12. In addition,
192.168.0.64 will also be scanned.

Address: 192.168.0.1-192.168.0.32 (192.168.0.4) (192.168.0.6-192.168.0.12) 192.168.0.64

Custom scans can also easily be created using the Edit->IP Range feature. Using this feature, the
following options shown in Table 5-7 become available to the user.

Table 5-7. Custom Scan Options

Command Description
Add Add the ranges entered to the address range to be scanned
Exclude Exclude the ranges entered from the address range to be scanned
Delete From the address list created, select any range and then Delete to remove
Clear When creating a custom address range, this option will clear all addresses entered so

far
Save After a custom address range to be scanned is developed, it can be saved for later use
Load If custom address ranges have been saved, this option allows them to be loaded

DRAFT FOR INFORMATION PURPOSE

44
FOR INFORMATION PURPOSE

5.3.1.3 Policy Selection/Creation. The policies that define Retina’s scans and tests can be
controlled using the Tools->Policies menu bar. From this option, three areas can be edited: Policies,
Ports, and Audits.

The Policies section is further separated into three parts: Policy selected, Preferences, and CHAM.
The policy selected includes two default policies. The first is a Port Scan policy for accomplishing a
complete port mapping of the targets, whereas the second is a Complete Scan that includes the
complete port mapping and a complete vulnerability audit. By selecting one of the above default
policies and then the Add button, custom policies can be derived from the default policy that was
selected. This is the recommended course of action because all options in the default port scans or
audits may not be desired in all networks.

The Preferences section contains to options:

• Force Scan
• Enable Connect Scan Mode.

The Force Scan option will proceed with any scan desired, even if the host does not respond to an
initial ping. Not all networks will be configured to respond to pings, causing live hosts to appear as
though they are not there. Therefore, it is recommended that this option be selected so hosts are not
skipped over during testing.

The Enable Connect Scan Mode changes the default scan mode from a SYN scan mode to a
CONNECT scan mode. The default SYN scan is a fast and reliable method for use in analyzing a
network; however, certain conditions may cause problems with SYN scan functionality. These
problems in functionality can arise as a result of firewall and network latency. If testing is performed in a
development environment as recommended, there should not be any firewall or network latency
problems. If CONNECT scanning is desired, this method is a more reliable, but slower method of
scanning. CONNECT scanning mode should be enabled only if the user is positive that the SYN
scanning is failing.

The CHAM test features are available for FTP, POP3, SMTP, and HTTP. Selecting the
corresponding boxes enables the CHAM test features for the selected protocol. CHAM test features
will be discussed further in Section 5.3.1.6.

The Ports section contains all of the defined ports for which Retina will scan for during a port scan.
This is not a complete listing of all the ports from 1 to 65536, so a selection box is available to perform
a complete port scan from 1 to 65356. A complete port scan will take additional time, but it is a
proven method to identify any open ports. This is helpful in identifying unknown ports that should not be
available and potentially are a security risk.

The Audits section contains the categories of vulnerability checks to be performed along with the
specific checks within each category. These should all be reviewed and selected custom for what

DRAFT FOR INFORMATION PURPOSE

45
FOR INFORMATION PURPOSE

checks are desired and level of safety in scanning is desired. The categories of vulnerability checks are
shown in Table 5-8.

Within each of the categories, the specific individual checks may also be included or excluded from
testing. If a category does not apply to the targets being scanned, or if a complete category is
determined to be too risky to apply, the complete category can be removed from the policy at hand.

Table 5-8. Vulnerability Check Categories

Vulnerability Category Description
Accounts Includes all audits related to user accounts
CGI Scripts Includes all audits of vulnerabilities associated with CGIs and scripts
CHAM Includes all audits of vulnerabilities associated with CHAM
Commerce Includes all audits of vulnerabilities associated with Commerce and store

transaction servers
DNS Services Includes all audits of vulnerabilities associated with DNS services
DoS Includes all audits of vulnerabilities associated with DoS
FTP Servers Includes all audits of vulnerabilities associated with FTP servers and file

transfer protocols
IP Services Includes all audits of vulnerabilities associated with IP services
Mail Servers Includes all audits of vulnerabilities associated with Mail servers, POP3,

Internet Message Access Protocol (IMAP), and SMTP
Miscellaneous Includes all audits of vulnerabilities associated with miscellaneous

vulnerabilities
NetBIOS Includes all audits of vulnerabilities associated with the NetBIOS protocol
Registry Includes all audits of vulnerabilities associated with the Windows Registry
Remote Access Includes all audits of vulnerabilities associated to remote access software
RPC Services Includes all audits relating to Remote Procedure Call (RPC) Services
Service Control Includes all audits relating to software packages they may allow way to

control and monitor their service remotely
SNMP Servers Includes all audits of Simple Network Management Protocol (SNMP)

server
SSH Servers Includes all audits of Secure Shell (SSH) server
Web Servers Includes all audits of vulnerabilities associated with Web servers, CGIs, and

the HTTP

5.3.1.4 Ports. The Tools->Ports menu bar allows for the addition, deletion and editing of the
standard ports that are included in the port scanning. This dialog allows for the custom definition of any
port for TCP and UDP with a description of what protocol is defined for that port. The ports will be

DRAFT FOR INFORMATION PURPOSE

46
FOR INFORMATION PURPOSE

listed by the port number, description, and then a letter denoting whether the description should be for
TCP (T), UDP (U), or both (B).

5.3.1.5 Options. The options for the tool can be accessed from the Tools->Options menu bar.
These settings include the following:

• General
• Alerts
• Schedule
• Theme.

The General options include settings for Performance, Reliability, Preferences, and Auto Update.

Performance
The Performance option allows for the performance level in relation to the speed and modules. The
speed specifies the number of processes the modules will have available for use. This setting ranges
from 1 to 20, with the speed of the scan increasing as the number increases. This means that a selection
of 20 will provide the quickest scan. Note, however, that the higher numbers will require more
resources, so a user should ensure that the host computer has sufficient resources available.

The modules allows for the control of how many targets can be scanned at the same time. The number
selected corresponds to how many are allowed. As with speed, the higher the number, the faster the
scan will complete; however, the same caveat exists in ensuring enough resources are available.

Reliability
The Reliability option allows for the ping timeout and data timeout to be specified. The ping timeout
refers to the amount of time Retina will wait for a response from a machine it is trying to contact. This
can range from 1 to 20, with a default of 10. During the initial ping scans that takes place to verify a
computer is live, this option can be over ridden by the Force Scan option covered in Section 5.3.1.3.
The data timeout refers to the amount of time Retina will wait for a response if a data transfer has
stopped. This can range from 3 to 60, with a default of 30.

Preferences
The Preferences option allows a log to be created from the current scan operation. Additionally, it
allows the tool to be minimized to the system tray as an icon. The log can be created by checking the
Create Log box and the Minimize to Tray icon can be selected by checking the Show as tray icon
when minimized box.

Auto Update
The Auto Update options allow for the auto update to never occur, to occur only after asking the user
and to occur automatically. Because eEye could possibly make changes to the tool and what will be
scanned, it is recommended that the update occur only after asking the user. Once the update occurs,
changes to the tool and the vulnerabilities it detects should be reviewed before any new scans are
started. Additional information about the Auto Update feature can be found in Section 5.3.1.1.

DRAFT FOR INFORMATION PURPOSE

47
FOR INFORMATION PURPOSE

Alerts
The Alerts features allow for the configuration of local alerts, email alerts, and messenger alerts. This
allows alerts to be sent through the above methods when vulnerabilities of the specified severity are
identified by Retina. The severity specified is ranked as follows: info, low, medium, or high. Local
alerts also allow for the playing of a sound file to audibly alert the user.

Schedules
The Schedule option allows for the scheduling of automatic scans for the local machine. By selecting
days and times in a grid, scans can be scheduled as often as every hour if desired. Note that when
scheduling automatic scans, the alert features should also be configured in a manner that will notify the
user when vulnerabilities have been found so immediate action can be taken where necessary.

Themes
The Theme option allows for the modification of the default color theme of the tool. This option has no
affect on the operation of the tool, only the preference of the user.

5.3.1.6 Common Hacking Attack Methods (CHAM). The CHAM feature of Retina is a collection
of special audits referred to as the Common Hacking Attack Method audits. These audits are designed
to discover unknown vulnerabilities within FTP, POP3, SMTP, and HTTP. The audits are designed to
uncover potential problem areas that may be vulnerabilities as a result of configuration problems, buffer
overflows, format bugs, integer overflows, off-by-one bugs, memory leaks, race conditions, signal
handling bugs, memory allocation (malloc) corruption bugs, and a wide variety of other security holes
that are exploited currently.

When testing in a development environment, these types of audits should always be included in the
testing. Because this may discover unknown vulnerabilities, there may not always be readily available
patching solutions. The solution may involve the contacting of the vendor responsible for the bug to
resolve any potential risk identified.

5.3.1.7 Wizards

Audits/RTH Wizard
The Retina Audit Wizard is available from the Tools->Audit Wizards menu bar. This wizard allows the
user to create a custom Retina audit, also known as an RTH. RTHs are files that contain information
about a vulnerability that enables the Retina Scanner module to search for and identify it in vulnerable
systems. Detailed information about creating these custom vulnerability checks can be found within the
Retina User Guide.

Plugins Wizard
The Retina Plugin Wizard allows for modules written in the Retina API to be loaded or unloaded.
Additional information about writing custom modules using the Retina API can be found in the Retina
API documentation.

DRAFT FOR INFORMATION PURPOSE

48
FOR INFORMATION PURPOSE

5.3.2 Tool Use

5.3.2.1 Tools Available. After configuring Retina and beginning the process to start the scanning,
four main tools will be available to complete the process. The tools are as follows:

• Browser
• Miner
• Scanner
• Tracer.

The Browser tool allows the user to browse a Web address from the Retina interface. This tool can be
separated into three parts: the Content view, the Details view, and the Outline view. The Content view
is a browser within Retina that is an embedded version of Internet Explorer. The Details view contains
information about the current Web page. This is the bottom window with the following information
shown in Table 5-9.

Table 5-9. Details View Information

Information Description
File Size Size of the file displayed in Content view
File Created Date file displayed in Content view was created
File Modified Date file displayed in Content view was last modified
File Content Text dump of the text on the file displayed in the Content view

The Miner tool is an agent released by Retina for the Retina AI Engine. This tool is an HTTP mining
application that runs using the AI rules defined in a “Brain file” supplied by the Retina modules. The
Brain file contains common words, file names, paths, and variables to be used by the Miner module in
operations, such as password guessing and locating hidden or unknown Web pages. Any results found
based on the Web server’s response to the Miner tool will be included in the report.

The Scanner Tool is Retina’s primary tool. This tool will perform the network audit of the addresses
supplied based on the policy that has been selected. The scanner will search for all known open ports
and services for the target IP addresses that are supplied. Based on the services found on the open
ports, the scanner will test for the appropriate security vulnerabilities. All open ports, services found,
and vulnerabilities identified can then be included in the report.

The Tracer tool completes a trace route from the host machine to the targets supplied, showing the
results in a graphical format in the Content view window. This will also provide the user with all the IP
address information of all the possible gateways, routers, and/or proxies between the host machine and
the target machine that are identified in the network path.

DRAFT FOR INFORMATION PURPOSE

49
FOR INFORMATION PURPOSE

5.3.2.2 Usage Description. This section will document the main usage of Retina as a scanner. In
this mode, the tool will perform a network vulnerability scan of the IP addresses supplied to determine
the risk levels of the hosts at each IP address. When performing a test, the following sequence of steps
should be followed, looping back as necessary. (See Figure 5-8.)

1. Update
2. Scan
3. Report
4. Patch.

Update
Before starting any scan, it is important to always update the product.
Because vulnerabilities are discovered daily, any updates to Retina’s
vulnerability database need to be downloaded and installed to ensure the
latest checks are run when using Retina for a scan.

Scanner
The Scanner is Retina’s default and primary mode for usage. When
selected, the Scanner mode will have three main windows. These
windows include the IP addresses that have been scanned, an overview of
the findings for the IP address selected from the first window, and details
for the finding selected in the second window. All the information found
here will also be included in any reports generated by the tool.

To start a scan, select Tools->Scanner from the menu bar, select the
address space to scan, and then press either the Enter key or the start
button. This action will complete a scan based on the configuration
settings and information entered. No further user interaction should be
necessary to complete the scan.

Report/Info
Retina reports can be generated using the Tools->Reports button from the menu bar. From a popup
dialog box, there are three main options that the user can select: Reports, Header Options, and Style
Options. The Reports option allows for the selection of Complete Reports, Executive Reports, or
Technical Reports. Note that custom reports can be developed by manually selecting and including
each section of the report. In addition, each section of the report can be edited by selecting the
Customize button.

The Header Options and Style Options sections allow for further customization of the reports. The
Header Options allow for custom header logos, titles, and descriptions to be inserted into the reports.
The Styles options allow for the style of report to be selected; however, the version of the tool at
present has only one option available: the Modern Style.

Figure 5-8. Retina Usage Flowchart

DRAFT FOR INFORMATION PURPOSE

50
FOR INFORMATION PURPOSE

5.3.3 Interpreting Tool Output

A complete report generated by Retina will be discussed in this section. The reports generated by
Retina include summary information along with detailed information on the findings separated out for
each IP address that was scanned. (See Figure 5-9.)

The detailed information for each IP address includes the following:

• General
• Audits
• Machine
• Ports
• Services
• Shares
• Users

The General information includes such information as IP address, report date, domain name, ping
response information, and time to live (TTL). This is basic information that does not go into any detail.

The Audits information includes the positive results of the security checks that were performed. Any
time a high, medium, low, or information risk level vulnerability is identified, it will be listed in the Audits
section.

The Machine information includes information such as the operating system, system time, MAC
address, NetBIOS name, NetBIOS workgroup, closed ports, and open ports. This type of information
is recorded in this area when found.

The Ports information includes any ports found to be listening or open and includes any suspected
protocol (if known) being used. Note that this information is found during the scan of the ports
identified when configuring the tool.

The Services information includes information such as computer browser, LanmanServer and
LanmanWorkstation, Netlogon, RPC, and spooler information when available. The Shares information
includes any shares that are identified. The Users information documents any user names that are
identified during the scan process.

The most important information is contained in the Audits section for each IP address. This information
details all vulnerabilities identified by Retina during the scanning process. This information is broken
down into Risk Level, Description, How To Fix, and CVE sections. When available, reference URLs
and BugtraqIDs are also included.

The Risk Level is broken down into four categories: high, medium, low, and information. Note that
these risk levels are generically assigned by Retina and may not apply to all situations; therefore, the user
must take care not to inadvertently dismiss them. All potential vulnerabilities must be evaluated to ensure

DRAFT FOR INFORMATION PURPOSE

51
FOR INFORMATION PURPOSE

proper risk level assignment in relation to the application’s environment and governing security policy.
The other sections are self-explanatory and assist in identifying additional information pertinent to the
vulnerability identified and possible remediation techniques and strategies.

After patching or repairing any discovered vulnerabilities, a new scan should always be performed. This
is especially important when certain vulnerabilities are ruled as false-positives and are not patched. The
results of this scan should subsequently be evaluated to ensure that the patching methodology used did
not create any new vulnerabilities. All new vulnerabilities should be accepted or patched/repaired. This
process should continue until the application is brought to an acceptable risk level.

5.4 SPLINT

This section is a supplement to the SPLINT Manual. The SPLINT Manual is well documented
and a complete guide for using SPLINT. All material in this section is based on SPLINT version
3.0.1.6.

Figure 5-9. Retina Report Excerpt Example

DRAFT FOR INFORMATION PURPOSE

52
FOR INFORMATION PURPOSE

5.4.1 Tool Configuration

SPLINT is a tool for statically checking C programs for potential security and coding flaws. SPLINT
(either Secure Programming Lint or Specifications Lint) which is based off LCLint, is developed and
maintained by the Secure Programming Group at the University of Virginia Department of Computer
Science.

SPLINT is executed from the command line and has many advanced features through the use of flags.
These flags are well documented in Appendix B of the SPLINT Manual and will not be addressed here.
Additional help is available for the topic areas shown in Table 5-10. If additional help is desired while
using the tool, this can be accessed using the following command from the command line:

 splint –help <topic or flag name>

Table 5-10. Topic Options with Help Available

Topic Description
Annotations Describes source-code annotations
Comments Describes control comments
Flags Describes flag categories
flags <category> Describes flags in category
flags all Short description of all flags
flags alpha Lists all flags alphabetically
flags full Full description of all flags
Mail Information on mailing lists
Modes Show mode settings
Parseerrors Help on handling parser errors
Prefixcodes Character codes in namespace prefixes
References Sources for more information
Vars Environment variables
Version Information on compilation, maintainer

An example command of using SPLINT to test the c code contained in the file test.c without also
testing any include files (with the extension .h) is as follows:

splint +never-include test.c

5.4.2 Tool Use

All scans performed should be done on copies of the source code in a secure directory. It should be
ensured that the code scanned has not undergone any changes after scanning. If any changes are
detected, then a new scan should be performed.

DRAFT FOR INFORMATION PURPOSE

53
FOR INFORMATION PURPOSE

The tool may be used in its default state and used to scan code in an iterative process. Once the code is
scanned, the results file should be analyzed. All potential security problems and issues should be
reviewed and changed if possible. Once this action has been accomplished, another iteration of
scanning should commence for two reasons: (1) the user needs to ensure that all security issues have
been sufficiently patched, and (2) in the process of fixing one security problem, additional and new
security issues may have been introduced into the code. Consequently, the scanning and fixing process
should proceed iteratively until all security issues are resolved either through repair or dismissal by false
positive.

5.4.3 Interpreting Tool Output

An example test of the c code test.c can be accomplished through the following process:

 splint +never-include test.c >test-out.txt

(Note that this command will test the c code test.c and output the results in text format to the file test-
out.txt. The resulting text file is Figure 5-10 below.)

Splint 3.0.1.6 --- 11 Feb 2002

test.c: (in function main)
test.c(10,2): Path with no return in function declared to return int
 There is a path through a function declared to return a value on which there
 is no return statement. This means the execution may fall through without
 returning a meaningful result to the caller. (Use -noret to inhibit warning)
test.c: (in function demo)
test.c(16,12): Unrecognized identifier: gettext
 Identifier used in code has not been declared. (Use -unrecog to inhibit
 warning)
test.c(17,9): Parameter 1 (b) to function strcpy is declared unique but may be
 aliased externally by parameter 2 (a)
 A unique or only parameter may be aliased by some other parameter or visible
 global. (Use -mayaliasunique to inhibit warning)
test.c(18,10): Unrecognized identifier: s
test.c(20,25): Unrecognized identifier: bug
test.c(21,2): Format string parameter to sprintf is not a compile-time
 constant: gettext("hello %s")
 Format parameter is not known at compile-time. This can lead to security
 vulnerabilities because the arguments cannot be type checked. (Use
 -formatconst to inhibit warning)
test.c(22,13): Unrecognized identifier: unknown
test.c(22,2): Format string parameter to sprintf is not a compile-time
 constant: unknown
test.c(23,9): Unrecognized identifier: bf
test.c(23,13): Unrecognized identifier: x
test.c(23,2): Format string parameter to printf is not a compile-time
constant:
 bf
test.c(24,2): Return value (type int) ignored: scanf("%d", &x)
 Result returned by function call is not used. If this is intended, can cast

DRAFT FOR INFORMATION PURPOSE

54
FOR INFORMATION PURPOSE

 result to (void) to eliminate message. (Use -retvalint to inhibit warning)
test.c(25,2): Return value (type int) ignored: scanf("%s", s)
test.c(26,2): Return value (type int) ignored: scanf("%10s", s)
test.c(27,2): Return value (type int) ignored: scanf("%s", s)
test.c(28,2): Use of gets leads to a buffer overflow vulnerability. Use fgets
 instead: gets
 Use of function that may lead to buffer overflow. (Use -bufferoverflowhigh
to
 inhibit warning)
test.c(28,7): Unrecognized identifier: f
test.c(28,2): Return value (type char *) ignored: gets(f)
 Result returned by function call is not used. If this is intended, can cast
 result to (void) to eliminate message. (Use -retvalother to inhibit warning)
test.c(31,2): Use of gets leads to a buffer overflow vulnerability. Use fgets
 instead: gets
test.c(31,2): Return value (type char *) ignored: gets(f)
test.c(32,2): Use of gets leads to a buffer overflow vulnerability. Use fgets
 instead: gets
test.c(32,2): Return value (type char *) ignored: gets(f)
test.c(40,2): Path with no return in function declared to return int
test.c: (in function demo2)
test.c(49,3): Unrecognized identifier: _mbscpy
test.c(50,3): Function memcpy called with 2 args, expects 3
 Types are incompatible. (Use -type to inhibit warning)
test.c(50,12): Passed storage s not completely defined (*s is undefined):
 memcpy (..., s)
 Storage derivable from a parameter, return value or global is not defined.
 Use /*@out@*/ to denote passed or returned storage which need not be
defined.
 (Use -compdef to inhibit warning)
test.c(51,3): Unrecognized identifier: CopyMemory
test.c(52,3): Unrecognized identifier: lstrcat
test.c(53,3): Function strncpy called with 2 args, expects 3
test.c(54,3): Unrecognized identifier: _tcsncpy
test.c(57,3): Unrecognized identifier: _tcsncat
test.c(58,3): Assignment of size_t to int: n = strlen(d)
 To allow arbitrary integral types to match any integral type, use
 +matchanyintegral.
test.c(60,3): Unrecognized identifier: MultiByteToWideChar
test.c(60,23): Unrecognized identifier: CP_ACP
test.c(60,32): Unrecognized identifier: szName
test.c(60,42): Unrecognized identifier: wszUserName
test.c(73,3): Unrecognized identifier: SetSecurityDescriptorDacl
test.c(73,30): Unrecognized identifier: sd
test.c(75,3): Unrecognized identifier: CreateProcess
test.c(76,2): Path with no return in function declared to return int
test.c: (in function getopt_example)
test.c(81,13): Unrecognized identifier: optc
test.c(81,20): Unrecognized identifier: getopt_long
test.c(81,49): Unrecognized identifier: longopts
test.c(83,2): Path with no return in function declared to return int
test.c: (in function testfile)
test.c(88,10): Possibly null storage f passed as non-null param: fclose (f)

DRAFT FOR INFORMATION PURPOSE

55
FOR INFORMATION PURPOSE

 A possibly null pointer is passed as a parameter corresponding to a formal
 parameter with no /*@null@*/ annotation. If NULL may be used for this
 parameter, add a /*@null@*/ annotation to the function parameter
declaration.
 (Use -nullpass to inhibit warning)
 test.c(87,7): Storage f may become null
test.c(88,3): Return value (type int) ignored: fclose(f)
test.c(89,2): Path with no return in function declared to return int

Finished checking --- 47 code warnings

Figure 5-10. SPLINT Output File Example

For additional information about interpreting the tool output and the various problems areas that are
detected by SPLINT, see the manual that provides complete explanations.

5.5 FLAWFINDER

This section as a supplement to Flawfinder manual (man) page, or user guide. All material in
this section is based on Flawfinder version 1.21.

5.5.1 Tool Configuration

Because Flawfinder is a script written in the Python programming language, installation of Python 1.5 or
greater is required for the successful execution of Flawfinder. Flawfinder is designed find potential
security flaws within C and C++ source code. Little configuration is needed for the successful operation
of the tool.

In Flawfinder’s most basic operation, the user must simply specify, at the command line, the directory of
source code to scan. However, there are more advanced options implemented with the use of
command line flags, as shown in Table 5-11.

Table 5-11. Flawfinder Command Line Flags

Flag Description
--help Show help information
--version Show version of Flawfinder
--allowlink Allow usage of symbolic links
--inputs Show only functions that obtain data from outside the program
--minlevel=X Set minimum risk level to X for inclusion in hitlist (0=”no risk”, to 5=

“maximum risk,” with default of 1)
-m X Same as –minlevel=X
--neverignore Do not ignore lines when ignore comments are found
-n Same as –neverignore

DRAFT FOR INFORMATION PURPOSE

56
FOR INFORMATION PURPOSE

--columns Show column number of each hit
--context Show the context, or the text of line with potential hit
-c Same as –context
--dataonly Do not display header and footer
--html Format output as HTML instead of text
--immediate Immediately display hits, do not wait until end
-i Same as –immediate
--singleline Display as single line output for text for each hit
-S Same as –singleline
--omittime Omit timing information
--quiet Do not display status information while analysis is on going
--loadhitlist=F Load the hitlist from F instead of analyzing source file
--savehitlist=F Save all resulting hits to filename F
--diffhitlist=F Show only hits that are not in filename F

An example of the usage for the python script to test the c code test.c outputting only those
vulnerabilities with a risk level of 2 or higher is as follows:

python flawfinder --minlevel=2 test.c

In addition to the flags, specially formatted comments may be added to source code so that certain lines
of code are ignored during a Flawfinder audit. When these comments are present in the code, they can
later be ignored using the neverignore flags as mentioned above. These comments can either be added
on the same line, or placed by themselves on the previous line. The two types of formats in which the
comments may be are as follows:

 // Flawfinder.ignore

 /* Flawfinder.ignore */

5.5.2 Tool Use

All scans conducted should be performed on copies of the source code in a secure directory to prevent
any inadvertent corruption. It should be ensured that the code scanned has not undergone any changes
after scanning. If any changes are detected, then a new scan should be performed.

The tool may be used in its default state and used to scan code in an iterative process. Once the code is
scanned, the results file should be analyzed. All potential security problems and issues should be
reviewed and changed if possible. Once this action has been accomplished, another iteration of
scanning should commence. This is necessary for two reasons: (1) the user needs to ensure that all
security issues have been sufficiently patched, and (2) in the process of fixing one security problem,
additional and new security issues may have been introduced into the code. Consequently, the scanning

DRAFT FOR INFORMATION PURPOSE

57
FOR INFORMATION PURPOSE

and fixing process should proceed iteratively until all security issues are resolved either through repair or
dismissal by false positive.

5.5.3 Interpreting Tool Output

The tool output rates security issues on a scale of 0 to 5. By default, only those of level 1 and above
will be reported. The risk level ranges from the level of 0, or no risk, up to the level of 5, or maximum
risk. The tool output will be sorted by risk, with the highest risk findings listed first. All attempts should
be made to reduce the risk level of all findings to 0, either through patching, or by manual elimination by
careful research and false positive reduction.

Not all findings will be security vulnerabilities and simultaneously not all security vulnerabilities will be
identified. This tool will assist only in identifying possibly security vulnerabilities, but as all these types of
tools will be, it is not guaranteed to identify all possible security vulnerabilities.

A sample test of the c code contained in the file test.c can be accomplished through the following
process and produce results as shown later.

 python flawfinder --html test.c >test-out.html

This command will test the c code test.c and output the results in html format to the file test-out.html.
The resulting html file is shown below in Figure 5-11:

Flawfinder Results

Here are the security scan results from Flawfinder version 1.20, (C) 2001-2002 David A. Wheeler. Number of
dangerous functions in C/C++ ruleset: 127

Examining test.c

• test.c:32 [5] (buffer) gets: does not check for buffer overflows. Use fgets() instead.

• test.c:56 [5] (buffer) strncat: easily used incorrectly; doesn't always \0-terminate or check for invalid
pointers. Risk is high; the length parameter appears to be a constant, instead of computing the number of
characters left.

• test.c:57 [5] (buffer) _tcsncat: easily used incorrectly; doesn't always \0-terminate or check for invalid
pointers. Risk is high; the length parameter appears to be a constant, instead of computing the number of
characters left.

• test.c:60 [5] (buffer) MultiByteToWideChar: Requires maximum length in CHARACTERS, not bytes. Risk is
high, it appears that the size is given as bytes, but the function requires size as characters.

• test.c:62 [5] (buffer) MultiByteToWideChar: Requires maximum length in CHARACTERS, not bytes. Risk is
high, it appears that the size is given as bytes, but the function requires size as characters.

• test.c:73 [5] (misc) SetSecurityDescriptorDacl: Never create NULL ACLs; an attacker can set it to

DRAFT FOR INFORMATION PURPOSE

58
FOR INFORMATION PURPOSE

Everyone (Deny All Access), which would even forbid administrator access.

• test.c:73 [5] (misc) SetSecurityDescriptorDacl: Never create NULL ACLs; an attacker can set it to
Everyone (Deny All Access), which would even forbid administrator access.

• test.c:17 [4] (buffer) strcpy: does not check for buffer overflows when copying to destination. Consider
using strncpy or strlcpy (warning, strncpy is easily misused).

• test.c:20 [4] (buffer) sprintf: does not check for buffer overflows. Use snprintf or vsnprintf.

• test.c:21 [4] (buffer) sprintf: does not check for buffer overflows. Use snprintf or vsnprintf.

• test.c:22 [4] (format) sprintf: Potential format string problem. Make format string constant.

• test.c:23 [4] (format) printf: if format strings can be influenced by an attacker, they can be exploited. Use a
constant for the format specification.

• test.c:25 [4] (buffer) scanf: the scanf() family's %s operation, without a limit specification, permits buffer
overflows. Specify a limit to %s, or use a different input function.

• test.c:27 [4] (buffer) scanf: the scanf() family's %s operation, without a limit specification, permits buffer
overflows. Specify a limit to %s, or use a different input function.

• test.c:38 [4] (format) syslog: if syslog's format strings can be influenced by an attacker, they can be
exploited. Use a constant format string for syslog.

• test.c:49 [4] (buffer) _mbscpy: does not check for buffer overflows when copying to destination. Consider
using a function version that stops copying at the end of the buffer.

• test.c:52 [4] (buffer) lstrcat: does not check for buffer overflows when concatenating to destination.

• test.c:75 [3] (shell) CreateProcess: this causes a new process to execute and is difficult to use safely.
Specify the application path in the first argument, NOT as part of the second, or embedded spaces could
allow an attacker to force a different program to run.

• test.c:75 [3] (shell) CreateProcess: this causes a new process to execute and is difficult to use safely.
Specify the application path in the first argument, NOT as part of the second, or embedded spaces could
allow an attacker to force a different program to run.

• test.c:81 [3] (buffer) getopt_long: some older implementations do not protect against internal buffer
overflows . Check implementation on installation, or limit the size of all string inputs.

• test.c:16 [2] (buffer) strcpy: does not check for buffer overflows when copying to destination. Consider
using strncpy or strlcpy (warning, strncpy is easily misused). Risk is low because the source is a constant
string.

• test.c:19 [2] (buffer) sprintf: does not check for buffer overflows. Use snprintf or vsnprintf. Risk is low
because the source has a constant maximum length.

• test.c:45 [2] (buffer) char: Statically-sized arrays can be overflowed. Perform bounds checking, use
functions that limit length, or ensure that the size is larger than the maximum possible length.

• test.c:51 [2] (buffer) CopyMemory: does not check for buffer overflows when copying to destination. Make
sure destination can always hold the source data.

• test.c:87 [2] (misc) fopen: Check when opening files - can an attacker redirect it (via symlinks), force the

DRAFT FOR INFORMATION PURPOSE

59
FOR INFORMATION PURPOSE

ancestors, or change its contents?.

• test.c:15 [1] (buffer) strcpy: does not check for buffer overflows when copying to destination. Consider
using strncpy or strlcpy (warning, strncpy is easily misused). Risk is low because the source is a constant
character.

• test.c:58 [1] (buffer) strlen: does not handle strings that are not \0-terminated (it could cause a crash if
unprotected).

• test.c:64 [1] (buffer) MultiByteToWideChar: Requires maximum length in CHARACTERS, not bytes. Risk is
very low, the length appears to be in characters not bytes.

Number of hits = 36
Number of Lines Analyzed = 89 in 0.56 seconds (1413 lines/second)
2 hit(s) suppressed; use --neverignore to show them.
Not every hit is necessarily a security vulnerability.
There may be other security vulnerabilities; review your code!

Figure 5-11. Example of Flawfinder Output File

As seen in Figure 5-11, all vulnerabilities identified are displayed from highest to lowest risk. The
source code and line number at which the vulnerability was found are noted, followed by the risk level in
brackets. The type of vulnerability is identified, followed by the vulnerability and a short description of
the issue, sometimes included a method to correct the issue.

5.6 RATS .

This section as a supplement to the RATS Readme page and other documentation. All material in
this section is based on RATS version 2.0.

5.6.1 Tool Configuration

RATS is capable of scanning C, C++, Python, Perl, and PHP source code and identifying potential
security vulnerabilities. This is accomplished by comparing function calls within the source code to
potentially vulnerable functions calls within the databases supplied by RATS.

RATS is executed from the command line with configuration accomplished through the use of flags. The
flags and their respective definitions are as shown in Table 5-12.

Table 5-12. RATS Command Line Flags

Flag Description
-d <filename>
--db <filename>
--database <filename>

Specifies a vulnerability database to be loaded. Multiple databases may be
loaded by repeating the use of the –d flag and filename

-h Displays a brief usage help summary

DRAFT FOR INFORMATION PURPOSE

60
FOR INFORMATION PURPOSE

--help
-I
--input

Lists function calls used that accepted external input at end of vulnerability
report

-l <lang>
--language <lang>

Force the specified language to be used regardless of filename extension.
Valid language names for <lang> are c, perl, php, and python

-r
--references

References to vulnerable function calls that are not being used as calls
themselves are reported

-w <level>
--warning <level>

Sets the warning level. Default is 2, valid selections are 1 (High), 2
(Medium), and 3 (Low).

-x Causes the default vulnerability databases not to be loaded
-R
--no-recursion

Disable recursion into subdirectories

--xml Output in XML
--html Output in HTML
--follow-symlinks Evaluate and follow symlinks

An example of the usage for the RATS tool to test the c code contained in the file test.c which outputs
only those vulnerabilities with a risk level of (3) or higher is as follows:

rats –warning 3 test.c

5.6.2 Tool Use

All scans performed should be performed on copies of the source code in a secure directory. It should
be ensured that the code scanned has not undergone any changes after scanning. If any changes are
detected, then a new scan should be performed.

The tool may be used in its default state and used to scan code in an iterative process. Once the code is
scanned, the results file should be analyzed. All potential security problems and issues should be
reviewed and changed if possible. Once this effort has been accomplished, another iteration of scanning
should commence for two reasons: (1) the user needs to ensure that all security issues have been
sufficiently patched, and (2) in the process of fixing one security problem, additional and new security
issues may have been introduced into the code. Consequently, the scanning and fixing process should
proceed iteratively until all security issues are resolved, either through repair or dismissal by false
positive.

5.6.3 Interpreting Tool Output

The tool output rates the security risk of the findings as high, medium, and low risk. Within the output,
this maps to a warning level of 1, 2, and 3, respectively. If a warning level of 1 is specified, then only
default and high-risk level vulnerabilities will be included in the report. If either the default is kept, or a 2
is specified, then medium risk level vulnerabilities will also be included in the report, along with what is

DRAFT FOR INFORMATION PURPOSE

61
FOR INFORMATION PURPOSE

included at the level of 1. If a warning level of 3 is specified, then the low risk level vulnerabilities will
also be included in the report.

An example test of the c code test.c can be accomplished through the following process and produce
results as shown later.

 rats --warning 3 --html test.c >test-out.html

This command will test the c code contained in the file test.c and output the results in html format to the
file test-out.html. The resulting html file is shown in Figure 5-12 below.

Note that not all findings will be security vulnerabilities and simultaneously not all security vulnerabilities
will be identified. This tool will assist only in identifying possible security vulnerabilities, but is not
guaranteed to identify all possible security vulnerabilities.

As shown in Figure 5-12, all vulnerabilities identified are output separately from highest to lowest risk.
Each vulnerability is identified by the Issue field. This is followed by a short description of the issue at
hand, and sometimes includes a method to correct the issue. The file tested and location of the
vulnerability is then noted by the File and Lines fields.

Entries in perl database: 33
Entries in python database: 62
Entries in c database: 334
Entries in php database: 55

Analyzing test.c

RATS results

Severity: High
Issue: gettext
Environment variables are highly untrustable input. They may be of any length, and contain any data. Do not make
any assumptions regarding content or length. If at all possible avoid using them, and if it is necessary, sanitize them
and truncate them to a reasonable length. gettext() can utilize the LC_ALL or LC_MESSAGES environment variables.

File: test.c
Lines: 16 21

Severity: High
Issue: strcpy
Check to be sure that argument 2 passed to this function call will not copy more data than can be handled, resulting
in a buffer overflow.

File: test.c
Lines: 16 17

Severity: High
Issue: sprintf

DRAFT FOR INFORMATION PURPOSE

62
FOR INFORMATION PURPOSE

Check to be sure that the format string passed as argument 2 to this function call does not come from an untrusted
source that could have added formatting characters that the code is not prepared to handle. Additionally, the format
string could contain `%s' without precision that could result in a buffer overflow.

File: test.c
Lines: 20 21 22

Severity: High
Issue: sprintf
Check to be sure that the non-constant format string passed as argument 2 to this function call does not come from
an untrusted source that could have added formatting characters that the code is not prepared to handle.

File: test.c
Lines: 21 22

Severity: High
Issue: printf
Check to be sure that the non-constant format string passed as argument 1 to this function call does not come from
an untrusted source that could have added formatting characters that the code is not prepared to handle.

File: test.c
Lines: 23

Severity: High
Issue: scanf
Check to be sure that the format string passed as argument 2 to this function call does not come from an untrusted
source that could have added formatting characters that the code is not prepared to handle. Additionally, the format
string could contain `%s' without precision that could result in a buffer overflow.

File: test.c
Lines: 24 25 26 27

Severity: High
Issue: gets
Gets is unsafe!! No bounds checking is performed, buffer is easily overflowable by user. Use fgets(buf, size, stdin)
instead.

File: test.c
Lines: 28 31 32

Severity: High
Issue: fixed size global buffer
Extra care should be taken to ensure that character arrays that are allocated on the stack are used safely. They are
prime targets for buffer overflow attacks.

File: test.c
Lines: 45 46

Severity: High
Issue: _mbscpy
Check to be sure that argument 2 passed to this function call will not copy more data than can be handled, resulting
in a buffer overflow.

DRAFT FOR INFORMATION PURPOSE

63
FOR INFORMATION PURPOSE

File: test.c
Lines: 49

Severity: High
Issue: lstrcat
Check to be sure that argument 2 passed to this function call will not copy more data than can be handled, resulting
in a buffer overflow.

File: test.c
Lines: 52

Severity: High
Issue: CreateProcess
Many program execution commands under Windows will search the path for a program if you do not explicitly
specify a full path to the file. This can allow trojans to be executed instead. Also, be sure to specify a file extension,
since otherwise multiple extensions will be tried by the operating system, providing another opportunity for trojans.

File: test.c
Lines: 75

Severity: Medium
Issue: SetSecurityDescriptorDacl
If the third argument, pDacl, is NULL there is no protection from attack. As an example, an attacker could set a Deny
All to Everyone ACE on such an object.

File: test.c
Lines: 73

Severity: Low
Issue: memcpy
Double check that your buffer is as big as you specify. When using functions that accept a number n of bytes to
copy, such as strncpy, be aware that if the dest buffer size = n it may not NULL-terminate the string.

File: test.c
Lines: 50

Severity: Low
Issue: CopyMemory
Double check that your buffer is as big as you specify. When using functions that accept a number n of bytes to
copy, such as strncpy, be aware that if the dest buffer size = n it may not NULL-terminate the string.

File: test.c
Lines: 51

Severity: Low
Issue: strncpy
Double check that your buffer is as big as you specify. When using functions that accept a number n of bytes to
copy, such as strncpy, be aware that if the dest buffer size = n it may not NULL-terminate the string. Also, consider
using strlcpy() instead, if it is available to you.

File: test.c
Lines: 53

DRAFT FOR INFORMATION PURPOSE

64
FOR INFORMATION PURPOSE

Inputs detected at the following points

Total lines analyzed: 90
Total time 0.000000 seconds
0 lines per second

Figure 5-12. Example of RATS Output File

DRAFT FOR INFORMATION PURPOSE

65
FOR INFORMATION PURPOSE

6. POST-ASSESSMENT PHASE

The post-assessment methodology is an essential component in the overall use and success of the
Toolkit. The developer will not only need to correct and mitigate any vulnerabilities discovered, but also
determine if the application still functions as originally intended (this test-evaluate-repair-validate cycle is
illustrated in Figure 6-1). In addition, the developer must capture lessons learned and integrate security
assessment and requirements validation into the overall life cycle of the application.

6.1 TAKE CORRECTIVE ACTIONS AND APPLY SUGGESTED FIXES

Once a tool has successfully completed its scan of the application, a report documenting its results will
typically be generated. If any vulnerabilities were discovered, it becomes the developer’s responsibility
to take appropriate corrective actions and implement any suggested fixes or repairs that were
documented. (Note that most tools within the current Toolkit will not automatically correct or fix any
vulnerabilities discovered. Instead corrective actions are suggested and documented to allow the
developer to easily determine which actions to take and quickly implement.) Figure 6-2 illustrates of the
type of output report that can be generated by many of the tools within the Toolkit. As shown in Figure
6-2, output reports typically summarize the vulnerability found and provide suggestions (e.g., URLs and
citations) on where to locate other, more detailed information. In addition, the report might contain

Start

Validate

Does App work
as intended?

Repair
problems

found

Evaluate Results

Were vulnerabilities
discovered?

Yes Test for
Vulnerabilities

Yes

NoReturn for
Further

Development

No

Finish
Testing

Deploy App

If Application changes later
on, return for further testing

Accept Risk
and Deploy

Or

Figure 6-1. Test, Evaluate, Repair, Validate Cycle

DRAFT FOR INFORMATION PURPOSE

66
FOR INFORMATION PURPOSE

suggestions on how to repair or mitigate the vulnerability. This information can range from URLs of
missing software patches or the latest version of software, to suggestions on how to revise code to
mitigate or eliminate the vulnerability.

Note that although the Toolkit will not specifically reference developer guidance or other related
documentation, it behooves the developer to review this documentation for additional mitigation
suggestions and strategies.

6.2 VALIDATE FUNCTIONALITY AND RERUN TOOL

Once actions have been taken to correct or mitigate any discovered vulnerabilities, it is vital that the
developer retest the functionality of the application. This action would help assure the developer that
none of the corrective actions have altered, damaged, or impaired the application’s original functionality
or have any unintended side effects. After completing this functionality test, the developer must go back
and retest the application for vulnerabilities by re-running the assessment tool. If no vulnerabilities are
discovered on this subsequent evaluation, then the developer may cease security testing. However, if
vulnerabilities are discovered, then the developer must take further corrective actions, or accept the
level of risk and cease security testing. If the developer chooses to take additional corrective actions,
then the developer must subsequently retest the application for functionality and then retest again for
vulnerabilities. This cycle of test-evaluate-repair-validate was illustrated in Figure 6-1.

Figure 6-2. Sample Output Report

DRAFT FOR INFORMATION PURPOSE

67
FOR INFORMATION PURPOSE

6.3 CAPTURE LESSONS LEARNED

All vulnerabilities discovered, corrective actions taken, and lessons-learned should be captured by the
development team as some form of a record, either written or electronic. This is important for two
reasons. First, by capturing this information, the developer creates a library of knowledge about past
vulnerabilities and corrective actions. This knowledge will help prevent similar vulnerabilities from
reemerging. Second, this knowledge will help prevent new developers from repeating mistakes in the
future, not only on the current application under development but also on any future applications. Any
knowledge learned about secure programming practices and application development must be retained
and passed onward to new developers.

The exact method of knowledge capture is left to the developer’s discretion, but it is strongly
recommended that it be performed in a clear, copious, and detailed manner that is easily accessible by
all current and future developers on the team.

6.4 ESTABLISH A TESTING AND EVALUATION REGIME

Note that vulnerability assessment is not a finite and static event that is conducted once in the life cycle
of an application. Instead, it is an ongoing process that must be repeatedly conducted throughout the
entire life cycle of an application, from its early development to any incremental improvements made
through time. Therefore, it is vitally important that developers establish a regular and routine testing
regimen in which the application is tested for vulnerabilities and compliance with security requirements,
especially after any development has occurred, major or minor. The use of such a testing and evaluation
regime will help the developer assure that an application is secure.6

6 For more information on software development, engineering, and the software life cycle, visit Carnegie Mellon
University’s Software Engineering Institute (http://www.sei.cmu.edu/sei-home.html). For more information on
security testing, see Chapter 2 of the DRAFT Guideline on Network Security Testing, John Wack and Miles Tracey,
NIST Special Publication 800-42, Computer Security Division, National Institute of Standards and Technology, 2001.
Although this document details security testing of networks, the same testing philosophy can be applied to
application security testing.

DRAFT FOR INFORMATION PURPOSE

68
FOR INFORMATION PURPOSE

7. CONCLUSION

As recent history has demonstrated, vulnerabilities are continually being discovered in all application
categories. Only through a process of continual security assessment throughout the development life
cycle can the developer have the slightest confidence that an application is secure. This document
creates an assessment process for application developers and security engineers to use as they design
and assess security mechanisms in their applications. This assessment methodology serves as a first step
in ensuring that security is designed into applications. This methodology will help developers understand
what needs to be secured so they can develop and insert specific application security controls and avoid
creating vulnerabilities as applications progress through their development life cycle.

DRAFT FOR INFORMATION PURPOSE

A-1
FOR INFORMATION PURPOSE

APPENDIX A: ACRONYMS

ACL Access Control List
AES Advanced Encryption Standard
AI Artificial Intelligence
ANSI American National Standards Institute
API Application Program Interface
ASAT Application Security Assessment Toolkit
CAC Common Access Card
CGI Common Gateway Interface
CHAM Common Hacking Attack Methods
CIO Chief Information Officer
CRL Certificate Revocation Lists
CVE Common Vulnerability Exposures
DBMS Database Management System
DID Defense in Depth
DISA Defense Information Systems Agency
DNS Domain Name Service
DoD Department of Defense
DoS Denial of Service
E-mail Electronic Mail
FTP File Transfer Protocol
GIG Global Information Grid
GPL GNU Public License
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
I&A Identification & Authentication
IIS Internet Information Server
IMAP Internet Message Access Protocol
IP Internet Protocol
ISS Internet Security Systems
KRL Key Revocation Lists
LDAP Lightweight Directory Access Protocol
MAC Media Access Control
MAN Manual
MS Milliseconds
NetBIOS Network Basic Input/Output System
NIST National Institute Of Standards & Technology
NSA National Security Agency
NTLM NT LAN Manager for Microsoft Windows
OS Operating System

DRAFT FOR INFORMATION PURPOSE

A-2
FOR INFORMATION PURPOSE

PHP PHP Hypertext Preprocessor
PKI Public Key Infrastructure
PKE Public Key Enabling
POP Post Office Protocol
RATS Rough Auditing Tool for Security
RBAC Role Based Access Control
RPC Remote Procedure Call
SHA Secure Hash Algorithm
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SQL Structured Query Language
SSH Secure Shell
SSL Secure Sockets Layer
SSO Single Sign On
STIG Security Technical Implementation Guide
TCP/IP Transport Control Protocol / Internet Protocol
TOCTOU Time Of Check/ Time Of Use
3DES Triple Digital Encryption Standard
TTL Time to Live
UDP User Datagram Protocol
URL Uniform Resource Locator
VA Vulnerability Assessment
VAT Vulnerability Assessment Tool
WinCGI Windows Common Gateway Interface

DRAFT FOR INFORMATION PURPOSE

B-1
FOR INFORMATION PURPOSE

APPENDIX B: REFERENCES

DRAFT Guideline on Network Security Testing, John Wack and Miles Tracy, NIST Special
Publication 800-42, Computer Security Division, National Institute of Standards and Technology,
2001.

eEye Digital Security, makers of Retina, can be found at www.eeye.com

Flawfinder can be found at www.dwheeler.com/flawfinder/

Internet Security Systems, Inc., makers of Database Scanner, can be found at www.iss.net

RATS can be found at www.securesw.com/rats.php

Software Engineering Institute, Carnegie Mellon University, http://www.sei.cmu.edu/sei-home.html

SPI Dynamics, makers of WebInspect, can be found at www.spidynamics.com

Splint can be found at www.splint.org or http://lclint.cs.virginia.edu

DRAFT FOR INFORMATION PURPOSE

C-1
FOR INFORMATION PURPOSE

APPENDIX C: REQUIREMENTS - TOOLKIT CAPABILITY MAP

The requirements in Appendix C were taken from the Recommended Standard Application Security
Requirements document, Section 4. The following items are a quick description of each column in
Table C-1.

• Req# is the reference number of the requirement. (This corresponds to the same
requirement in the Recommended Standard Application Security Requirements guide).

• QuickReference is a simple phrase to quickly refer to the requirement.

• Requirement describes the actual requirement.

• Vuln. Adr. refers to the Common Application Vulnerabilities code number from the
Recommended Standard Application Security Requirements guide, Section 3.1.1).

• Tool Category Mapping indicates all possible mappings of the requirement to the current
toolkit.

Note that the right-most column, “Tool Category Mapping,” indicates all possible mappings for the
current toolkit. If a tool category can be mapped to a requirement, then that mapping is explicitly listed
in this column. Any category that is omitted for a particular requirement indicates that no mapping exists
for that category at this time. For example, Requirement 4.0.1 indicates a direct mapping for the Web
Application tool, Database tool, and General-Purpose tool, but not for the Developer tools. Consider
Requirement 4.1.7, which indicates that an indirect mapping exists only for the Database tool; none of
the other tools have a mapping (either direct or indirect). Finally, Requirement 4.0.7 has no mapping
(direct or indirect) whatsoever; manual procedures must instead be used.

Table C-1. Requirements – Toolkit Capability Map

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

GENERAL APPLICATION SECURITY REQUIREMENTS FOR ALL IA MECHANISMS

4.0.1 No bypass of
application security
controls

The application must prevent users from bypassing any security
controls to directly access underlying Database Management System
(DBMS) or operating system (OS) resources.

V3 • Web Application
• Database
• General-Purpose

4.0.2 Integrity of external
security

The application must not perform, and must not be able to be used to
perform, any function that may change the security configuration,
security files, or security programs of the information system and
operating environment to which the application belongs.

V2, V3 Indirect mapping
using all tools.

4.0.3 Integrity of external
operation

The application must not undermine or substitute the functionality or
purpose of DBMS or OS files and programs, including security files
and programs.

V2 Indirect mapping
using all tools.

4.0.4 Integrity of platform
security

The application must not modify underlying DBMS or OS security
files, programs, or data.

V2 Indirect mapping
using all tools.

DRAFT FOR INFORMATION PURPOSE

C-2
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

4.0.5 Integrity of platform
operation and data

The application must not modify files, programs, or data belonging to
other applications, DBMS, or OS in any unauthorized way.

V2 Indirect mapping
using all tools.

4.0.6 Interoperability
with DoD PKI

The application’s PKI functions must be implemented using PKI
technology that is interoperable with DoD PKI. [7]

V3 None. Use
Supplemental
Procedures

4.0.7 Class 4 certificates A PK-enabled application that supports DoD PKI Class 3
certificates must accommodate the transition to Class 4 certificates
with minimal modification of application code. [8]

 None. Use
Supplemental
Procedures

4.0.8 PK-enabling of
applications

An electronic mail (E-mail) (including Web e-mail) application in a
classified or unclassified environment, or a Web applications in an
unclassified environment, must be PK-enabled by the deadline
specified in DoD PKI Policy. [6,7]

NOTE: PK-enabling of Web applications in classified environments is
strongly encouraged.

 None. Use
Supplemental
Procedures

4.0.9 Approval of
cryptography

Encryption technology (including key lengths, algorithm, certificate
class, and token type) used by the application in connection with
I&A, access control, confidentiality, integrity, or nonrepudiation must
be approved by National Security Agency (NSA) if the application is
a Mission Category I application, or by NSA or National Institute of
Standards and Technology (NIST) if the application is a Mission
Category II application. [1,6,7].

 None. Use
Supplemental
Procedures

4.0.10 High-risk services Avoid use of high-risk services and technologies, such as Telnet,
Simple Network Mail Protocol (SNMP) and mobile code in/by
applications unless absolutely necessary.

 • Web Application
• General-Purpose

4.0.11 Application
deployment

Before deploying the application, ensure that backup files, File
Transfer Protocol (FTP) programs, and debugging files, tools,
accounts, passwords, debug and test flags, and other developer
“backdoors” have been removed from the application code and its
platform.

V17 • Web Application
• General-Purpose

4.0.12 Privileged processes Avoid requiring application processes to have privileges greater than
those granted to end-users of the application, unless absolutely
necessary.

 Indirect mapping
using all tools.

4.0.13 Hypertext Markup
Language (HTML)
comments

Before installing the application, remove all references and comments
from HTML code that might reveal features of the application’s
design.

 • Web Application

4.0.14 Browser application
facilities

Avoid use of scripts, cookies, and plug-ins unless absolutely
necessary.

 • Web Application

IDENTIFICATION AND AUTHENTICATION

4.1.1 Authentication of
application users

The application must ensure that users have been authenticated before
granting them access to sensitive resources or trusted roles. [2,18].

V1 • Web Application
• Database

4.1.2 Required
Identification and
Authentication

I&A performed before granting access to the application must use a
nonforgeable, nonreplayable mechanism that supports one-way and
two-way authentication. [2]

V1 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-3
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

(I&A) technology

4.1.3 Desirable I&A
technology

I&A using single sign-on (SSO), public key enabling (PKE), smart
card, and/or biometric technology is strongly encouraged. [1]

V1 None. Use
Supplemental
Procedures

4.1.4 Authentication chain
of trust

For every user session and transaction, the application must ensure that
an authentication chain of trust is established and maintained among the
client/browser, the application server, and any backend servers used by
the application.

V1, V3, V18 Indirect mapping
using Web
Application tool.

4.1.5 I&A trusted path If the application performs user I&A:

The I&A trusted path must be initiated by the user, not the application.
[2]

V1 None. Use
Supplemental
Procedures

4.1.6 Backend system I&A If the server application interfaces with a “backend” system or DBMS,
and that system requires users to be authenticated to it before allowing
them access:

The application must not prevent the backend system from
authenticating users as necessary.

V1, V3 None. Use
Supplemental
Procedures

4.1.7 Maximum number of
unsuccessful I&A
attempts

If the application performs user I&A:

The I&A mechanism must enable administrator configuration of the
maximum number of login attempts (configurable per user or per role)
allowed within a given time period. [2]

V1 Indirect mapping
using Database tool.

4.1.8 I&A lockout period If the application performs user I&A:

The application I&A mechanism must enable administrators to configure
the duration of the “lockout” period during which a user (or role) who
exceeds the number of allowable login attempts will be prevented from
making another I&A attempt. [2]

V1 Indirect mapping
using Database tool.

4.1.9 I&A using PKI
certificates

If the application performs certificate-based I&A:

The application must support the PKI (X.509) certificate class
appropriate to the application’s Mission Category [1,2,7]:

• Mission Categories I and II: DoD PKI Class 4 certificates, or
Class 3 certificates (until the deadline for DoD PKI transition to
Class 4)

• Mission Category III: DoD PKI Class 3 (until DoD PKI
transition to Class 4)

V1 None. Use
Supplemental
Procedures

4.1.10 I&A using PKI tokens If the application performs token-based I&A:

The application must support the type of token appropriate to the
application’s Mission Category [1,2,7]:

• Mission Categories I and II: FORTEZZA, common access card
(CAC), or another NSA-approved Class 3 or Class 4 hardware
token

• Mission Category III: CAC or software token (until DoD PKI
transition to CAC)

V1 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-4
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

4.1.11 Private Web server
I&A

If the application is a Web server application running on an
Unclassified but private (versus public access) Web server:

The Web server application must perform I&A using Class 3 or Class
4 PKI (X.509) certificates transmitted via Secure Sockets Layer (SSL).
[2,6,7]

V1 None. Use
Supplemental
Procedures

4.1.12 Public Web server
I&A

If the application is a Web server application running on a Web server
that stores publicly releasable data to which access must be restricted
to either:

• Preserve copyright protections, or

• Limit access to only browsers originating from certain sites,
or

• Facilitate development of the data:

The Web server application must implement I&A using Class 3 or
Class 4 PKI (X.509) certificates transmitted via SSL. [2,6,7]

V1 None. Use
Supplemental
Procedures

4.1.13 Classified Web server
I&A

If the application is a Web server application running on a classified
Web server:

The Web server application should implement certificate-based I&A
using the appropriate class of PKI (X.509) certificate. [6,7]

V1 None. Use
Supplemental
Procedures

4.1.14 Browser support for
tokens

Browsers, including those that support software tokens, must support
use of CAC or FORTEZZA (as appropriate for the particular
application) for storing the user's certificates, by the DoD PKI-defined
deadline for migration to tokens. [6,7]

V1 None. Use
Supplemental
Procedures

4.1.15 No I&A by Java
applets

Web applications must not use Java applets to perform I&A. V1 None. Use
Supplemental
Procedures

4.1.16 Support for Class 4
certificates

If the application performs I&A based on Class 3 certificates:

The application must be able to accommodate use of Class 4 certificates
with minimal change to the application code. [1,2,7]

V1 None. Use
Supplemental
Procedures

4.1.17 Support for CAC If the application performs I&A based on certificates stored in software
tokens:

The application must be able to accommodate use of the CAC by the
DoD PKI policy-defined deadline, with minimal change to the
application code. [1,7]

V1 None. Use
Supplemental
Procedures

4.1.18 I&A using biometrics If the application performs user I&A using biometrics:

The application I&A mechanism shall use biometrics in accordance with
DoD policy. [1]

NOTE: As of May 2002, no DoD biometric policy has been published.

V1 None. Use
Supplemental
Procedures

4.1.19 Strong passwords If the application performs user I&A based on UserID and static
password:

The application’s password management mechanism must prevent users
from choosing passwords that do not comply with the following rules

V1, V4 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-5
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

[1,2]:

1. Password must be case-sensitive

2. Password must contain at least eight characters

3. Password must not contain spaces or "+"

4. Password must contain at least one of each of the following:

• Uppercase letter, and

• Lowercase letter and

• Nonalphanumeric (“special”) character

NOTE: An example of a correctly constructed password:

[etMe1n!

4.1.20 Password changes If the application performs user I&A based on UserID and static
password:

The application’s password management mechanism must [1,2]:

1. Enable the administrator to assign passwords to users.

2. Enable the user to change his/her own password on demand.

V1 None. Use
Supplemental
Procedures

4.1.21 Password expiration If the application performs user I&A based on UserID and static
password, and the application does not handle only publicly releasable
data (in which case, this requirement is optional):

The application's password management mechanism must enable the
administrator to set an expiration threshold for every password
associated with every UserID. [1,2]

V1 • Database

4.1.22 Selection of new
password after
password expiration

If the application performs user I&A based on UserID and static
password, and the application does not handle only publicly releasable
data (in which case, this requirement is optional):

The application must not authenticate a user whose password has
expired until the user changes the expired password. [1,2]

V1 • Database

4.1.23 Group I&A If the application performs I&A at the group level:

The application must individually authenticate each user who claims to
be a group member before performing group level I&A. [1]

V1 Indirect mapping
using Web
Application and
Database tools.

4.1.24 Confidentiality of
transmitted
passwords

If the application transmits sensitive I&A data (e.g., passwords) over a
network:

The application must encrypt user passwords and any other sensitive
I&A data before transmission over a network. [1,2,18]

NOTE: Use of hexadecimal or another noncryptographic encoding
scheme instead of encryption is unacceptable.

V1, V5,
V18

None. Use
Supplemental
Procedures

4.1.25 Confidentiality of
password during
reformatting

If the application reformats passwords or other sensitive I&A data:

The application must prevent any other process or user from reading
the cleartext I&A data while they are being reformatted.

V1, V5 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-6
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

4.1.26 Integrity of I&A data If the application reformats or transmits over a network passwords or
other sensitive I&A data:

The application must—

1. Change only the presentation format of the I&A data, and not
the data content.

2. Prevent any other process or user from modifying the I&A
data during reformatting or transmission.

V1, V6 • Web Application

4.1.27 I&A between client
and server processes

If the application is a distributed client-server application that:

• Operates in a high level of concern environment in which
security protections are not adequately robust, and

• Performs sensitive functions or handles high-value
information.

The application’s server processes must authenticate all client processes
using an interprocess authentication technology approved by NSA or
NIST and appropriate for the application’s Mission Category (e.g.,
X.509/SSL or Kerberos), before accepting any requests from those client
processes.

 None. Use
Supplemental
Procedures

4.1.28 Interprocess I&A in
peer-to-peer
applications

If the application is a distributed peer-to-peer application that:

• Operates in a high level of concern environment in which
security protections are not adequately robust, and

• Performs sensitive functions or handles high-value
information.

The application’s peer processes must mutually authenticate one
another using an interprocess authentication technology approved by
NSA or NIST and appropriate for the application’s Mission Category
(e.g., X.509/SSL or Kerberos) before either process accepts any request
from the other process.

 None. Use
Supplemental
Procedures

4.1.29 Warning message to
authenticated users

If the application performs user I&A:

The application must notify every authenticated user of the following
before granting the user access to the application resources [1,2]:

1. The user has accessed a government system

2. The extent to which the application will protect the user’s
privacy rights

3. The highest sensitivity level/classification of data that may
be handled by the application

4. The user’s actions are subject to audit

5. The user’s responsibilities for handling sensitive or
classified information when using the application.

Furthermore, if the application handles classified information, the
notification message must also include the following information
associated with the authenticated UserID:

6. Date, time, origination (e.g., client/browser IP address or

 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-7
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

domain name) of most recent previous login

7. Number of unsuccessful login attempts by the UserID
since the last successful login.

4.1.30 Unique UserIDs If the application performs user I&A based on UserID and password:

The application must not accept more than one password from the
same UserID.

V1 None. Use
Supplemental
Procedures

4.1.31 Unique passwords If the application performs user I&A based on UserID and password:

The application must not accept the same password from more than
one UserID.

V1 None. Use
Supplemental
Procedures

4.1.32 No anonymous
accounts

The application must not authenticate anonymous UserIDs. V1 None. Use
Supplemental
Procedures

4.1.33 Authentication
requires trustworthy
credential

The application must not authenticate users based on UserID alone;
the application must require users to present a trustworthy
authentication credential (e.g., password, certificate, and biometric).

V1 None. Use
Supplemental
Procedures

4.1.34 Freedom in assigning
UserIDs and
GroupIDs

The application must not prevent the administrator from assigning any
UserID he/she chooses to any user account, or from assigning any
GroupID he/she chooses to any group account.

The application must not force the administrator to assign a particular
UserID to a particular user account (e.g., “Administrator” to the
administrator account), and must not force the administrator to assign
a particular GroupID to a particular group account.

V1 None. Use
Supplemental
Procedures

AUTHORIZATION AND ACCESS CONTROL

4.2.1 Authorization The application must ensure that users have been authorized to perform
the functions they attempt to perform or access the resources they
attempt to access, and that those authorizations explicitly allow them to
perform those functions or access those resources in the ways the users
attempt to do so.

V2 • Web Application
• Database

4.2.2 Authorization
information
management

If the application performs authorization:

The application must provide a tool for creating and modifying
authorization information (e.g., Access Control Lists [ACL]s) and must
ensure that the tool can be accessed only by an authorized user.

 None. Use
Supplemental
Procedures

4.2.3 Authorization
information
confidentiality

If the application performs authorization:

The application must protect the confidentiality of its authorization
information. [19]

V2 Indirect mapping
using all tools.

4.2.4 Authorization
information integrity

If the application performs authorization:

The application must protect the integrity of its authorization
information from unauthorized modification or substitution.

V2 • Web Application

4.2.5 Authorization
information
availability

If the application performs authorization:

The application must protect the availability of its authorization
information.

V2 Indirect mapping
using all tools.

DRAFT FOR INFORMATION PURPOSE

C-8
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

4.2.6 Interprocess
authorization

If the application performs interprocess I&A:

The application must perform interprocess authorization using
technology (e.g., X.509 certificates) approved by NSA or NIST and
appropriate for the application’s Mission Category.

 None. Use
Supplemental
Procedures

4.2.7 RBAC for privileged
accounts

The application must ensure that Role-Based Access Control (RBAC)
is used to designate and authorize privileged accounts (e.g.,
administrator accounts).

V2 None. Use
Supplemental
Procedures

4.2.8 RBAC in classified
applications

Classified applications must ensure that RBAC enforces separation of
duties and least privilege. [1]

V2 None. Use
Supplemental
Procedures

4.2.9 Maximum number of
sessions

If the application that allows a multiple sessions by the same UserID:

The application must [1,2]:

1. Enable the administrator to configure the maximum number
of simultaneous sessions allowable per UserID, per role,
and per organization/Group ID.

2. Prevent users who reach that maximum from initiating
another session until they terminate an already-active
session.

 None. Use
Supplemental
Procedures

4.2.10 Inactivity timeout
(“deadman”
capability)

The application must [1,2]:

• Enforce a session timeout that suspends user access to the
application after a configured period of inactivity.

• Reauthenticate the user before allowing him/her to resume a
suspended session.

• Allow the administrator to configure the session timeout.

• Allow the user to suspend his/her application session at will.

V2 None. Use
Supplemental
Procedures

4.2.11 Access control for
classified data

If the application (regardless of Mission Category):

• Stores classified data, and

• Can be accessed by users who are not cleared to read data of
that classification level

The application must [7]:

• Provide the necessary APIs to an underlying OS (and, if
appropriate, DBMS) that implements Mandatory Access
Controls (MAC) robust enough to protect the classified
data from unauthorized disclosure, or

• Use NSA-approved Type 1 cryptography to encrypt the
data before storage.

V2 None. Use
Supplemental
Procedures

4.2.12 Access control for
sensitive and Mission
Category I
unclassified data

If the application:

• Stores sensitive* or Mission Category I unclassified data,
and

• Can be accessed by users who are not authorized to read

V2 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-9
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

those data.

The application must [7]:

• Provide the necessary Application Programming Interface
(API)s to an underlying OS (and, if appropriate, DBMS)
that implements access controls robust enough to protect
the classified data from unauthorized disclosure; or

• Use 3 Data Encryption Standard (3DES) or Advanced
Encryption Standard (AES) to encrypt the data before
storage.

4.2.13 Data change
notification

The application must indicate to users, upon access to data, the date
and time of the most recent change to the data. [1]

 None. Use
Supplemental
Procedures

4.2.14 Labeling of classified
data

If the application is either:

• Used to create or modify classified data, or

• A Mission Category I is used to create or modify classified or
sensitive data.

The application must apply the appropriate confidentiality and
integrity labels to the data at the time of creation or modification. These
labels must be understood by the access control mechanism used to
control access to the data. [1,2]

 None. Use
Supplemental
Procedures

4.2.15 Labeling of
unclassified data

If the application is used to create or modify unclassified but not publicly
releasable data:

The application must apply a label to the data upon creation or
modification that clearly indicates that the data are not releasable to the
public. These labels must be understood by the access control
mechanism used to control access to the data. [1,2]

 None. Use
Supplemental
Procedures

4.2.16 Marking of output If the application transmits data or sends it to a printer:

The application must ensure that the data are marked to reflect the
sensitivity level/classification of data produced by the application
(including handling caveats, code words, and dissemination control
markings). [2]

 None. Use
Supplemental
Procedures

4.2.17 Invalid pathname
references

Whenever a pathname or Uniform Resource Locator (URL) referenced
in the application code is changed or removed from the system, the
application code must be changed to change or delete that reference.

V14 • Web Application

4.2.18 Truncated
pathnames

If a user presents a truncated pathname or URLs that do not end in a
file name:

The application must not allow the user to access the file system
directory indicated by the pathname.

V13 • Web Application

4.2.19 Relative pathnames If the application code contains references to pathnames or URLs:

The code must reference the absolute pathname/URL, not the relative
pathname or URL.

V12 • Web Application

4.2.20 Relative pathnames Applications must not accept relative pathnames or URLs input by V12 • Web Application

DRAFT FOR INFORMATION PURPOSE

C-10
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

input by users users.

4.2.21 Rejection of directly
entered URLs

If the application is a Web portal application:

The application must not allow users to access Web pages/resources
not explicitly allowed by links on the portal page by directly typing
the URLs of the forbidden pages/resources into their browser’s
“Location” line.

V20 • Web Application

4.2.22 Browser protection
of user identity
information

Browsers should ensure that cookies and other user identity
information stored on the browser platform are protected from
disclosure and tampering.

V19 • Web Application

4.2.23 CGI scripts CGI scripts must not contain “holes” that can be exploited to gain
direct access to the underlying operating system.

V16 • Web Application

CONFIDENTIALITY

4.3.1 Encryption API There must be an API that enables the application to invoke an
encryption capability to selectively encrypt data and files. [2]

 None. Use
Supplemental
Procedures

4.3.2 Nondisclosure of
cleartext data

The application must ensure that sensitive cleartext data (including
passwords) are not disclosed before encryption.

V5, V18 None. Use
Supplemental
Procedures

4.3.3 Encryption before
transmission

If the application transmits data over a network:

The application must invoke encryption of data before transmission
using encryption technology appropriate for the characteristics of the
data and the network, as indicated below [1,2,7]:

1. If the data are classified at a higher level than the
network.

Invoke NSA-approved Type 1 encryption technology.

2. If there are users on the network who are not cleared to
read data at that classification level:

Invoke NSA-approved Type 1 encryption technology.

3. If the network is a public network:

Invoke NSA-approved Type 1 encryption technology.

4. If the data are SAMI data (even if the network is at the
same classification level as the data):

Invoke NSA-approved Type 1 encryption technology.

5. If the network is at the same classification level as the
data, BUT the data have a different need-to-know than
the network:

Invoke 3DES or AES, or get a signed waiver from the data owner
allowing unencrypted transmission.

6. The data are sensitive, and the network is a public
network.

V5 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-11
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

Invoke 3DES or AES (shorter key length is acceptable)

7. The data are Mission Category I data, and the network
is a public network.

Invoke 3DES or AES with the longest key length.

4.3.4 Encryption of stored
data

If the infrastructure on which the application runs does not adequately
protect the confidentiality of sensitive data stored by the application:

The application must invoke encryption of data before storage using
encryption technology appropriate for the characteristics of the data
and the network, as indicated below:

1. If the data are classified and the application can be accessed
by users not cleared to data of that classification level:

Invoke NSA-approved Type 1 encryption technology.

2. If the data are Sensitive or Mission Category I Unclassified
and the application can be accessed by users not authorized
to read those data:

Invoke 3DES or AES [7].

3. If the data are SAMI, and the application can be accessed by
users not cleared/authorized to read SAMI, and no waiver
has been granted by the responsible Chief Information officer
(CIO) to allow the data to be stored in unencrypted form:

Invoke NSA-approved Type 1 encryption technology. [1]

 None. Use
Supplemental
Procedures

4.3.5 Protection of
cryptokeys

If the application ensures that data are encrypted:

The encryption facility invoked by the application must ensure that
unauthorized users cannot access the cryptokeys needed to decrypt the
data. [2]

 None. Use
Supplemental
Procedures

4.3.6 PKI encryption
certificates

If the application invokes a PKI to encrypt data:

The PKI invoked by the application must use DoD PKI Class 4 or
Class 3 certificates when performing the encryption. [1]

 None. Use
Supplemental
Procedures

4.3.7 Application object
reuse

Before shutdown, the application must delete/erase all temporary files,
cache, data, and other objects it created during its execution. [2]

 None. Use
Supplemental
Procedures

4.3.8 Confidentiality of
crypto. material

The encryption facility invoked by the application must protect from
disclosure all sensitive cryptographic material that is, keying material,
private keys, and (if so indicated by the application's robustness) the
cryptographic algorithm implementation. [2,18]

 None. Use
Supplemental
Procedures

4.3.9 Confidentiality of
user identities

If the identity of users must be protected from disclosure:

The application must not [19]:

• Reveal to external users or processes the identity of any
user associated with any application session.

• Include within or append onto a data object an indicator
of the identity of the data’s creator or sender.

 Indirect mapping
using all tools.

DRAFT FOR INFORMATION PURPOSE

C-12
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

• Invoke any external process that includes within or
appends onto a data object any indicator of the identity
of the data’s creator or sender.

INTEGRITY

4.4.1 Integrity of
transmitted data

If the application transmits data over a high level of concern network:

The application must use a NIST-approved or NSA-approved
technology (as appropriate for the application’s Mission Category) to
implement a hash (e.g., Secure Hash Algorithm One [SHA-1]),
checksum, or digital signature (e.g., DSS) of the data before
transmission.

 None. Use
Supplemental
Procedures

4.4.2 Integrity of
transmitted
application code

If the application is used to transmit application code (including some
mobile code, see Section 4.6) over a high level of concern network with
inadequately robust security protections:

The application must invoke an approved digital signature technology to
digitally sign the code prior to transmission. [1,18]

NOTE: If desired, the application may also invoke an approved
technology to apply a hash or checksum to the code before transmission.

 None. Use
Supplemental
Procedures

4.4.3 Integrity of stored
data

If the infrastructure on which the application runs does not adequately
protect the integrity of data stored by the application:

The application must invoke NIST- or NSA-approved technology (as
appropriate for the application’s Mission Category) to apply a hash,
checksum, or digital signature to the data before storage.

 None. Use
Supplemental
Procedures

4.4.4 Integrity mechanism
validation

If the application is used to retrieve stored data or to receive transmitted
data that have an integrity mechanism applied to them:

The application must be able to validate the integrity mechanism, and
must reject data for which the integrity mechanism validation fails.

 None. Use
Supplemental
Procedures

4.4.5 Validation of
parameters

The application must validate parameters before acting on them, and
must reject all parameters that:

• Are not formatted as expected by the application

• Do not fall within the bounds (length, numeric value, etc.) expected
by the application

V8 • Web Application
• Developer
• General-Purpose

4.4.6 Notification of
acceptable input

If the application requires a user to input data:

The application must inform the user of the expected characteristics
of the input e.g., length, type (alphanumeric, numeric only, alpha-
only, etc.), and numeric or alphabetic range.

 None. Use
Supplemental
Procedures

4.4.7 Validation of user
input

The application must validate all data input by users or external
processes, and must reject all user input that:

• Is not formatted as expected by the application

• Falls outside the bounds (e.g., length, range) expected by the
application

• Contains HTML

V7, V10,
V11

• Web Application
• General-Purpose

DRAFT FOR INFORMATION PURPOSE

C-13
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

• Contains meta code

• Contains embedded Structured Query Language (SQL) queries
that include illegal characters

• Contains any other type of unexpected content

4.4.8 Rejection of
incorrect input

If data input by users or external processes cannot be validated by the
application:

The application process that received the invalid input must (as
appropriate given the purpose and robustness of the application):

• Request the external user or process to reinsert the data, or

• Gracefully terminate the user process with an error message to
the user indicating that the process is terminating as a result of
an input error.

 Indirect mapping
using Web
Application,
Developer, and
General-Purpose
tools.

4.4.9 Input validations by
server

All user input validations must be performed by the server application,
not by the client application (e.g., the application must not rely on
browser JavaScript validation).

 • Web Application

4.4.10 Data containing active
content

Application validation of user input data that contains active content
(e.g., mobile code) must not result in the execution of the active content.

V9 • Web Application

4.4.11 Application process
integrity

If the application updates data:

The application’s data update processes must operate correctly, and
must not incorrectly reparse, inadvertently introduce errors to, or
otherwise corrupt the data they update.

V6

Indirect mapping
using Web
Application,
Developer, and
General-Purpose
tools.

4.4.12 Integrity of
transmitted
application code

If the application receives transmitted application code (e.g., mobile
code):

The application must find and validate the digital signature and any
hash, checksum, or other additional integrity mechanism applied to that
code before executing it. [1,18]

If the code has no digital signature, or cannot validate the digital
signature, hash, or checksum:

The application must discard the code without executing it. (This
discard must be audited.)

 None. Use
Supplemental
Procedures

4.4.13 Application
configuration integrity

If the underlying infrastructure does not adequately protect the integrity
of the application’s configuration and other parameter files from
corruption or unauthorized modification by malicious processes or
unauthorized users:

The application must invoke a virus scanning tool to scan such files
every time the application uses them. [2]

NOTE: Administrators must keep virus signature files used by virus
scanning tools up to date.

 None. Use
Supplemental
Procedures

4.4.14 Application
executable integrity

If a hash, checksum, or other integrity mechanism was applied to the
application’s executable code at installation time, before the application

 None. Use
Supplemental

DRAFT FOR INFORMATION PURPOSE

C-14
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

is executed:

The process that validates that checksum or hash must be invoked
before the application is executed to ensure that the application’s
current executable code state has not changed since the original integrity
mechanism was applied.

If this validation fails, the validation process must:

1. Prevent the application from being launched

2. Notify the administrator that the application code needs to be
replaced by an uncorrupted executable.

Procedures

4.4.15 Time/date stamp of
data modification

An application that modifies data must time/date stamp each data
modification. [1]

 None. Use
Supplemental
Procedures

4.4.16 Display of data
time/date stamp

The application must display to each user who retrieves the data the
time and date on which the data were last modified. [1]

 None. Use
Supplemental
Procedures

4.4.17 Resolution of mode
changes

Before it shuts down, the application must reverse any changes in the
application’s operating mode or state that occurred during its
execution, and must return to its normal mode and state of operation.

 None. Use
Supplemental
Procedures

4.4.18 Initialization of
variables

If the programming language in which the application is written does
not automatically ensure that all variables are initialized to zero when
declared:

The application code must explicitly initialize all of its variables
when they are declared.

NOTE: “C” does not provide the necessary zero initialization of
variables.

 • Web Application

• Developer

4.4.19 Integrity of crypto
data

The application must ensure that all sensitive crypto materials used
by the application are protected from corruption or modification by
unauthorized users or malicious processes. [19]

 Indirect mapping
using all tools.

4.4.20 Cryptokey
revocation

The encryption facility invoked by the application must handle and
respond correctly to Key Revocation Lists (KRL) issued by the
cryptographic implementation and must not continue to use revoked
keys. [19]

 None. Use
Supplemental
Procedures

4.4.21 Certificate
revocation

The PKI invoked by the application must handle and respond
correctly Certificate Revocation Lists (CRL) issued by the PKI’s
certification authority and must not continue to honor revoked
certificates. [19]

 None. Use
Supplemental
Procedures

4.4.22 Signature of code If the application receives mobile code, interpreted (versus compiled)
code, or other active content, it must not execute that code until it:

• Verifies that the code has been digitally signed

• Validates the digital signature on the code.

 None. Use
Supplemental
Procedures

4.4.23 Use of hidden fields If an application Web page contains a hidden field:

The application must validate the source of all HTML updates to the

V21 • Web Application

DRAFT FOR INFORMATION PURPOSE

C-15
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

field and must reject any HTML field changes from unvalidated
sources.

AVAILABILITY

4.5.1 Data availability The application code must not contain errors, bugs, or vulnerabilities
that could cause any executing process within the application to
inadvertently delete or overwrite data, to incorrectly assign/change
access permissions to that data, or to otherwise impinge on the data’s
availability.

 • Web Application
• Developer
• General-Purpose

4.5.2 Server application
availability

Server application code, regardless of Mission Category, should not
include bugs, errors, or exploitable vulnerabilities that could cause the
executing application to crash.

 • Web Application
• Developer
• General-Purpose

4.5.3 Mission Category 1
client application
availability

Mission Category 1 client applications* must not include bugs, errors,
or exploitable vulnerabilities that could cause the executing application
to crash.

 • Web Application
• Developer
• General-Purpose

4.5.4 Maintenance of
secure state

If the application fails or is affected by an error, the crash/error must
not cause the system to go into an insecure state. [1,2]

Restart of the application must not cause the system to go into an
insecure state.

 Indirect mapping
using Web
Application,
Developer, and
General-Purpose
tools.

4.5.5 Application failure
notification

If an application process fails, the administrator must be immediately
notified in one or more of the following ways (to be configured by the
administrator) [2]:

• E-mail

• Console message

• Pager message.

 None. Use
Supplemental
Procedures

4.5.6 Secure application
recovery

During recovery from a failure, the application must verify the integrity
of its data, configuration files, parameters, etc., before executing. [2]

 None. Use
Supplemental
Procedures

4.5.7 Application Denial Of
Service (DOS)

Server application code, regardless of Mission Category, and Mission
Category 1 client applications code must exclude bugs, errors, or
exploitable vulnerabilities that could be exploited by a malicious user or
program to launch a successful DoS attack against the application.

 • Web Application
• Developer
• General-Purpose

4.5.8 Error handling and
recovery

Application error handling and recovery capabilities must be robust
enough that they cannot be overwhelmed by a flood of malformed
arguments from malicious users or processes into a DOS state.

V15 • Web Application
• Developer
• General-Purpose

4.5.9 Missing files Before attempting to use any file or directory, the application must
first verify that the file/directory exists on the system.

If the file/directory is missing:

 • Web Application

DRAFT FOR INFORMATION PURPOSE

C-16
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

The application must:

1. Return an error message informing the user that the requested
file/directory cannot be found

2. Gracefully terminate the user process through which the user
requested the missing file/directory, and the server process
that searched for that file/directory.

4.5.10 Key recovery The encryption facility invoked by the application must perform the
key recovery processes required by the cryptographic
implementation.

 None. Use
Supplemental
Procedures

ACCOUNTABILITY

4.6.1 Audit/event logging
mechanism

The application must log all security-relevant events (configured by the
administrator) to its own secure audit file, or transmit its log data to an
external audit facility. [1,2,18]

 • Database

Indirect mapping
using General-
Purpose and Web
Application tools.

4.6.2 Configurable audit/log
parameters

The audit facility used by the application must allow the administrator
to select the events to be logged and the information to be captured
about each event. [1,2,18]

 • Database

4.6.3 Events to be
audited/logged

The application must log the following types of events to its audit
facility, at a minimum [1,2,18]:

• Startup and shutdown

• Authentication

• Authorization/permission granting

• Actions by trusted users

• Process invocation

• Data access attempt

• Data update

• Data deletion

• Input validation

• Establishment of network connection

• Data transfer

• Application configuration change

• Application of confidentiality or integrity labels to data

• Override or modification of data labels or markings

• Output to removable media

• Output to a printer.

 • Database
Indirect mapping using
General-Purpose and
Web Application tools.

DRAFT FOR INFORMATION PURPOSE

C-17
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

4.6.4 Binding of UserID to
audit record

The audit facility used by the application must bind the individual ID
of the user causing (or associated with) the audited event to the audit
record for that event. [2]

 • Database

Indirect mapping
using General-
Purpose and Web
Application tools.

4.6.5 Audit information
captured by classified
applications

If the application handles classified data:

Each audit record must include the following information (as relevant
for the type of event) [1,2,18]:

• UserID of user or process ID of process causing the event

• Successful or failure of attempt to access a security file

• Date and time of the event

• Type of event

• Success or failure of event

• Seriousness of event (violation)*

• Successful or failure of login attempt

• Denial of access resulting from excessive number of login attempts

• Blocking or blacklisting a UserID, terminal, or access port, and the
reason for the action

• Data required to audit the possible use of covert channel
mechanisms

• Privileged activities and other system level access

• Starting and ending time for access to the application

• Activities that might modify, bypass, or negate safeguards
controlled by the system

• Security-relevant actions associated with periods processing, or
the changing of security labels or categories of information

 Indirect mapping
using Database, Web
Application, and
General-Purpose
tools.

4.6.6 Audit information
captured by sensitive
and nonpublic access
applications

If the application handles sensitive or unclassified but not-publicly
releasable data but no classified data:

Each audit record must include the following information (as relevant
for the type of event) [1,2,18]:

• UserID of user or process ID of process causing the event

• Success or failure of attempt to access security file

• Date/time of event

• Type of event

• Success or failure of event

 Indirect mapping
using Database, Web
Application, and
General-Purpose
tools.

DRAFT FOR INFORMATION PURPOSE

C-18
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

• Seriousness of event (violation)

• Success or failure of login attempt

• Denial of access resulting from excessive number of login attempts

• Blocking or blacklisting of UserID, terminal, or access port, and
reason for the action

• Activities that might modify, bypass, or negate security
safeguards controlled by the application

4.6.7 Audit information
captured by public
access applications

If the application handles only publicly releasable data:

Each audit record must include the following information (as relevant
for the type of event) [1,2,18]:

• UserID of user or process ID of process causing the event

• Success or failure of attempt to access security file

• Date/time of event

• Type of event

• Success or failure of event

• Seriousness of event (violation).

 Indirect mapping
using Database, Web
Application, and
General-Purpose
tools.

4.6.8 Protection of audit
records

The audit facility used by the application shall ensure that the
application’s audit records are protected from deletion or unauthorized
disclosure/modification. [1,2]

 Indirect mapping
using Database, Web
Application, and
General-Purpose
tools.

4.6.9 Audit trail “fill
thresholds”

The audit facility used by the application shall enable the administrator
to set the audit trail “fill thresholds” as follows [2]:

1. A threshold that indicates the audit trail is some percentage
full, which shall trigger a notification to the administrator
that the file should be archived and purged.

2. A threshold that indicates the audit/log file is full, which
shall trigger one of the following events (configurable by the
administrator):

• Graceful shutdown of the application, or

• Suspension of user processing, or

• Overwriting of the oldest audit records, or

• Termination of auditing, or

• Increase of storage space allotted for audit records (to an
amount configurable by the administrator)

 None. Use
Supplemental
Procedures

4.6.10 Audit failure If the audit facility used by the application fails, one of the following
events (configurable by the administrator) must occur [2]:

• Shutdown of the application, or

 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-19
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

• Suspension of user processing, or

• Notification of the administrator, or

• Automatic restart of the audit facility

4.6.11 Security violation
notifications

The audit facility used by the application must [1]:

1. Immediately alert the security administrator of all security
violations and unusual or suspicious activity that might indicate a
security violation.

2. Gracefully shut down the application if the event is considered
serious* enough to warrant it.

 Indirect mapping
using Database, Web
Application, and
General-Purpose
tools.

4.6.12 Audit trail viewing
and reporting tool

The audit facility used by the application shall include a tool that
enables the administrator to view the application’s audit records, and to
report against them. [1]

 None. Use
Supplemental
Procedures

NON-REPUDIATION

4.7.1 Digital signature of
created and transmitted
data

If the application requires non repudiation by the creator or sender of
data or cryptokeys:

The application must invoke a NIST- or NSA-approved digital
signature technology (e.g., DSS) appropriate to the application’s
Mission Category to enable the creator/sender to digitally sign the
data/keys the application is used to create or transmit over the network.
[1,2]

 None. Use
Supplemental
Procedures

4.7.2 Digital signature of
received data (proof of
delivery)

If the application requires non repudiation by the recipient of data sent
over the network:

The application must invoke a NIST- or NSA-approved digital
signature technology (e.g., DSS) appropriate to the application’s
Mission Category to enable the recipient to sign received data. [1]

 None. Use
Supplemental
Procedures

4.7.3 Digital signature
validations

The application must invoke a digital signature validation facility to
validate all digital signatures applied to data or cryptokeys it receives
over the network or retrieves from a database or directory. [1]

 None. Use
Supplemental
Procedures

4.7.4 Protection of digital
signature security data

The application must protect from tampering and inappropriate
disclosure the cryptokeys and certificates it uses for digital signature
processing. [1]

 Indirect mapping
using all tools.

4.7.5 PK-enabling of e-mail
applications

All DoD e-mail applications (including Web e-mail applications) must
include or invoke a digital signature facility that uses Class 3
certificates; this facility must accommodate use of Class 4 certificates
by the deadline specified in DoD PKI Policy, with minimal
modification to application code. [6,7]

 None. Use
Supplemental
Procedures

MOBILE CODE

4.8.1 Category 1 and 2
mobile code source

If the Web server application (or other server application) acts as the
source for Category 1 or Category 2 mobile code:

The application must digitally sign the mobile code before releasing it
using a PKI code signing certificate approved by NIST or NSA
(depending on the Mission Category of the application) to sign the

 None. Use
Supplemental
Procedures

DRAFT FOR INFORMATION PURPOSE

C-20
FOR INFORMATION PURPOSE

REQ # QUICK REFERENCE REQUIREMENT
VULN .
ADR.

TOOL CATEGORY

MAPPING

code. [1,8]

Exceptions to this requirement:

• If the responsible CIO has signed a written waiver allowing the
use of commercial certificates for mobile code signing, the
application may release Category 1 or Category 2 mobile code
signed using commercial certificates.

• If the responsible CIO has signed a written waiver allowing the
use of Category 2 mobile code without code that has not been
signed, the application may release Category 2 mobile code
without a digital signature.

4.8.2 Category 1 and 2
mobile code execution

Before executing Category 1 or Category 2 mobile code, the browser (or
other client application) must validate the digital signature on the
mobile code to ensure that the code originated from a trusted source.
[1,8]

 None. Use
Supplemental
Procedures

4.8.3 Category 2 mobile
code execution

Category 2 mobile code must be implemented in a way that ensures
that it executes in a constrained environment without access to local OS
and network resources (e.g., file system, Windows registry, and
network connections other than to its originating host). [1,8]

 None. Use
Supplemental
Procedures

4.8.4 Category 2 mobile
code notification

The browser (or other client application) must be configurable to warn
users when the application is about to execute Category 2 mobile code.
[1,8]

 None. Use
Supplemental
Procedures

4.8.5 Category 3 mobile
code

The application may act as a source for, or may execute, Category 3
mobile code after a risk assessment has been performed, and
appropriate risk mitigation safeguards and countermeasures have been
implemented. [1,8]

 None. Use
Supplemental
Procedures

4.8.6 Emerging mobile code
technology

The application must not act as a source for, or execute, emerging
mobile code technology unless a written waiver has been granted
according to DoD Mobile Code Policy Section 1.4.3. [1,8]

 None. Use
Supplemental
Procedures

4.8.7 Mobile code in e-mail
messages

An e-mail client application must disable/prevent (or interface in
trustworthy way with another program that can disable) the execution
of mobile code in message bodies or attachments. [1,8]

 None. Use
Supplemental
Procedures

4.8.8 E-mail client mobile
code notification

An e-mail client application must be configurable to issue a warning to
the user, before opening an e-mail attachment, that the attachment
about to be opened may contain mobile code. [1,8]

 None. Use
Supplemental
Procedures

